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Preface

This volume collects the papers presented at “Human Perspectives on Spoken Human-Machine Interaction”
(SpoHuMa21), a Junior Researcher Conference hosted by the Freiburg Institute for Advanced Studies (FRIAS).
SpoHuMa21 addressed interactions between humans and spoken dialogue systems, i.e., intelligent systems
that receive spoken natural language input and respond with synthesized speech. The focus was not on the
mere transmission of information, for example through one-turn interactions, typically with simple command-
and-control systems. Rather, the goal of the conference was to gather and exchange knowledge and research
approaches on the fundamental mechanisms of human speech perception and production in the context of
spoken interaction with machines. To this end, SpoHuMa21 brought together junior and senior researchers
from linguistics, psychology, cognitive science, sociology, computer science, and related fields to contribute
their perspectives.

The development of spoken dialogue systems aims to enable human users to interact with them as naturally
as possible via speech. Such spoken human-machine interfaces artificially emulate human behavior. However,
research on spoken dialogue systems often focuses on machine-centered, technical aspects and is mainly based
in areas such as computer science and artificial intelligence. The objective of SpoHuMa21 was therefore to
highlight human-centered, linguistic issues while including perspectives from related fields.

Exploring the impact of individual differences between speakers in terms of psychological or cognitive
characteristics on the way they interact with virtual interlocutors is gaining increasing attention in spoken
human-machine interaction (HMI) research. The settings in which these interactions occur is also a point of
interest: How does a conversation proceed with automated customer support on the phone or with an embodied
social robot in the same room? Can we assume that people’s attitudes towards virtual interlocutors shape the
way spoken interactions take place, and that the interactions in turn shape people’s attitudes towards speaking
devices? Combining the insights gained from exploring real-life spoken HMI applications, for example in the
medical field or in the field of computer-assisted language learning, can inform us about meaningful future
directions for development.

The papers presented at SpoHuMa21 explore spoken HMI from various angles. The contributions by
Ibrahim & Skantze (p. 6) and Sinha & Siegert (p. 11) examine how human speech in HMI changes depending
on the addressee and what challenges are involved in understanding its variability. Allen (p. 17) and Leisten
& Rieser (p. 23) investigate another aspect of human speech, namely gender-based perception and behavior
differences, and how these may influence the attitude towards speaking devices. Various medical applications
that leverage spoken HMI are presented by Collins, Bevacqua, De Loor, & Querrec (p. 29), Attas, Kellett,
Blackmore, & Christensen (p. 35), and Pevy, Christensen, Walker, & Reuber (p. 40). These include seizure
narration, emotion dimensions of speakers with anxiety disorders, and virtual medical assistance. Finally,
Honkalammi, Veivo, & Johansson (p. 46) and Chen, Liesenfeld, Li, & Yao (p. 52) deal with cooperative
aspects of spoken HMI, such as advice giving in learning processes and the effect of computer disfluency on
memory recall.

SpoHuMa21 also featured invited talks by leading researchers, which are briefly introduced and summa-
rized in the following.

Roger K. Moore is a professor of Spoken Language Processing at the University of Sheffield, UK, and
holds Visiting Chairs at Bristol Robotics Laboratory, UK, and University College London, UK. He is an engi-
neer by training, but much of his research has been based on insights from human speech perception and pro-
duction. In his talk entitled “Spoken language interaction with ‘intelligent’ systems: Are we nearly there yet?”,
he discussed how we have almost gone too far with development in some areas of spoken HMI (e.g., human-
sounding synthetic speech), while other areas lag behind due to the underappreciated richness and complexity
of linguistic interaction (e.g., considering situatedness and leveraging world knowledge). The affordances of
all components in spoken HMI should be aligned to avoid a sense of uncanny incongruence for the user. He
stressed the importance of modeling as a tool to ensure that development is headed in the right direction.
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Michelle Cohn is a postdoctoral fellow at the University of California, Davis, USA, and a principal investi-
gator on an NSF Training Fellowship to explore the interaction of humans with voice assistants. In her talk with
the title “Speech behavior with voice assistants: cognitive, social, and emotional factors”, she reported on ex-
perimental results showing how humans adapt their way of speaking to virtual interlocutors. She demonstrated
the influence of age and gender – of both the user and the device – on human speech behavior, and showed
that emotional expressiveness in the device’s speech and the degree of its embodiment are predictors for the
occurrence of adaptation. As the capabilities of virtual interlocutors improve, the mental models users have of
them will change, which in turn will have an impact on spoken HMI.

Catharine Oertel is an assistant professor at Delft University of Technology, The Netherlands, and a
principal investigator of the Designing Intelligence Lab. Her research focus is on understanding and modeling
human interaction to develop socially aware conversational agents, and on exploring how humans and artificial
intelligence can creatively collaborate over extended periods of time. In her talk, entitled “On socially-aware
conversational agents – challenges and outlook”, she talked about engagement in HMI. In the presented studies,
she discussed methods for measuring human engagement levels when interacting with physical robots and the
influence of engagement on the interactions. She showed how robots can utilize different social behaviors to
improve HMI and the impact such improved behaviors have on human interlocutors.

Karola Pitsch is a professor of Multimodal Communication, Social Interaction, and Technology at the
University Duisburg-Essen, Germany. She conducts research on the topic of multimodal interaction, including
human-machine interfaces. In her talk with the title “Human-robot interaction as a methodological tool for
research on situated interaction”, she focused on the multimodal analysis of human-robot interaction to develop
dynamic interaction models (e.g., for interactions with robots in educational settings or in museums). She
argued that HMI does not need to replicate human-human interaction, but should rather be inspired by it. In
her opinion, the goal must be to identify small building blocks of human-human interaction that can be usefully
employed in HMI.

Friederike Eyssel is a professor of Social Psychology at Bielefeld University, Germany, with a focus
on gender and emotion in cognitive interaction. She is affiliated with the Center of Excellence Cognitive
Interaction Technology (CITEC). In her talk entitled “A social psychological perspective on social robots”, she
addressed the question of whether psychological mechanisms of human-human interaction also apply to HMI.
She reviewed the ways people anthropomorphize robots (e.g., giving vacuum cleaner robots a name and talking
to them) and presented results showing that people indeed feel bad about ignoring a robot that, for example,
would like to play a game with them. She also elaborated on how the IKEA effect (i.e., assigning a higher value
to a product if one was involved in its construction) can play a role in technology acceptance.
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Revisiting robot directed speech effects in spontaneous Human-Human-Robot
interactions

Omnia Ibrahim 1, Gabriel Skantze2

1Language Science and Technology dept., Saarland University, Germany
2Dept. of Speech Music and Hearing, KTH Royal Institute of Technology, Sweden
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Abstract

In this paper, we investigate the differences between
human-directed speech and robot-directed speech dur-
ing spontaneous human-human-robot interactions. The
interactions under study are different from previous
studies, in the sense that the robot has a more similar
role as the human interlocutors, which leads to more
spontaneous turn-taking. 20 conversations were ex-
tracted from a multi-party human-robot discussion
corpus, where two humans are playing a collabora-
tive card game with a social robot. Each utterance in
the conversations was manually labeled according to
addressee (robot or human). The following acoustic
features were extracted: fundamental frequency, in-
tensity, speaking rate, and total utterance duration.
There were significant differences between human-
and robot-directed speech for speaking rate and the
total utterance duration. These results are in line
with previous studies on robot-directed speech, and
confirms that this difference holds also when the con-
versations are of a more spontaneous nature.

1 Introduction

Recent years have seen an increased interest in mod-
eling communication for human-robot interaction;
dynamic modeling of spoken dialogue seeks to cap-
ture how interlocutors change their speech over the
course of a conversation. However, modelling con-
versational interaction between humans and robots
is non-trivial. For multi-party conversational inter-
action, other aspects need to be addressed. For ex-
ample, user’s utterances directed to another human
interlocutor should not be recognised as commands
directed to a robot.

In human-machine interactions, participants have
been shown to address computers/robots differently
than humans. Speakers change their acoustic char-

acteristics (e.g., raise their F0, slower speaking rate)
when they are talking to a computer/robot in com-
parison to a human [1, 2, 3]. This is also in line with
the findings of [4], although they found visual cues
(e.g. eye gaze and head movement) to be more in-
formative.

A possible explanation for the differences be-
tween robot-directed speech (RDS) vs. human-directed
speech (RDS) might be that speaker adapts to the
limited understanding capabilities of the robot; when
speaker are aware of a speech perception difficulty
on the part of the listener (e.g., due to background
noise, a hearing impairment, or a different native
language), speakers will naturally and spontaneously
modify their speech in an attempt to make them-
selves more intelligible. [5]. According to the hypo-
to hyper-articulation theory, those within-speaker vari-
ations reflect the trade-off between clarity of speech
(listener-oriented output) and economy of effort (talker-
oriented output) [6]. In this respect, goal-oriented
speaking styles, such as infant- or robot-directed speech,
can be seen as an adjustment of the speaker’s output
(consciously or unconsciously) to meet the demands
of their target audience or the communicative situa-
tion [7].

On the other hand, there are factors that might
affect humans’ perception of robots. According to
the Computers as Social Actors paradigm, humans
apply the same social rules used in human interac-
tions when they interact with computer [8, 9]. Fur-
thermore in light of recent advances of social robots,
the interaction with computers (or robots) via spo-
ken language is becoming more and more integrated
into our everyday life. Social robots (e.g., Furhat)
are accompanied with expressive lip movements, fa-
cial gestures, gaze and non-verbal expressions, such
as breathing, filled pauses and different types of backchan-
nels, which have been shown to be easy for users to
read [10] and allows for more natural and sponta-

© 2022 The Authors. This is an open access article under the CC BY license. DOI: 10.6094/UNIFR/223822 6
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neous communication between humans and robots.
However it is still not clear whether such advances
affect the differences between human vs robot-directed
speech in real-life setting.

The present study aims for better understand-
ing of human behavior during human-robot interac-
tions by exploring the extent to which humans adapt
their speaking style to the listener in unstructured
human-human-robot interactions. A similar study
was conducted by [11, 12]. However, their exper-
iment used a voice-based device (Amazon Alexa)
as the computer interlocutor. In our experiment we
used a physical social robot. The interactions un-
der study are different from previous studies, in the
sense that the robot has a more equal role as the other
humans, which leads to a more spontaneous alterna-
tion of addressee (human and robot). We hypothe-
sise that a human-like social robot (Furhat) will have
an effect on humans’ perception of the interaction
and consequently might reduce the differences be-
tween human- and robot-directed speech.

2 Methods

The data used for the analysis comes from a setting
where two humans play a collaborative card game
with a social robot [13]. While playing the game,
the participants and the robot discuss the solution
together in a symmetrical three-party dialogue. The
data was collected at an exhibition in the Swedish
National Museum of Science and Technology for
nine days.

2.1 Participants

The interactions of 20 adult male participants was
extracted from the data. The age of the players ranged
between 16 and 64, with a mean of 35 years. The
total conversation duration ranged from 4 to 12 min-
utes.

2.2 Recording setup

The interactional setting of the game is illustrated in
Figure 1. Two players were seated at a large table
with a multi-touch screen, opposite the Furhat robot
head, which has an animated face back-projected on
a translucent mask, as well as a mechanical pan-tilt
neck [10]. This allows Furhat to direct the gaze us-
ing a combination of head and eye movements.

Figure 1: The setup used in the museum

Both users were wearing unidirectional headset
microphones, which allowed for the recording of two
separate good quality audio streams (given the noisy
setting in the museum). The signal to noise ratio in
the recording is around 38 dB. A Kinect camera was
used to track the location and rotation of the users’
heads.

2.3 Procedure

The team was seated at a table and the recordings
started when they pressed a ‘Start’ button on the
touch screen. The robot initiated the interaction by
asking them for their names. Then five cards were
shown on the table and Furhat (with a male voice
and face) explained the game, which consists of sort-
ing 5 cards according to sorting criterion, after which
the discussion starts. An example interaction is shown
in Figure 2. Furhat’s turn-yielding behaviour was
randomly selected for each turn, both in terms of ad-
dressee and speech act (e.g., question or statement).

Figure 2: Example interaction (translated from
Swedish)

© 2022 The Authors. This is an open access article under the CC BY license. DOI: 10.6094/UNIFR/223822 7
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Figure 3: Percentage of utterances addressed to human vs robot for each speaker

After the task was discussed for some time, a
button was shown on the table that could be pressed
to reveal the solution. Furhat then commented on the
solution, comparing it with his own belief (admit-
ting mistakes or pointing out that they should have
listened to him).

2.4 Data analysis

Each utterance in the conversation was manually la-
beled according to addressee type (robot or human)
using ELAN annotation software [14]. Overlapping
utterances between speakers were excluded from our
analysis. The following acoustic features were ex-
tracted using Praat scripts [15]: fundamental fre-
quency (mean, median, standard deviation, range,
slope (how fast ƒ0 changes during the utterance), in-
tensity and speaking rate (vowels per minute) and
total utterance duration.

For statistical analysis, Linear mixed-effects mod-
eling was used to evaluate the effect of addressee
type (human vs. robot) on the acoustic signal using
R lmer package [16]. Backwards model selection
procedure was applied to arrive at a final model as
reported below. Our fixed effect was addressee type,
while the random effect was speaker to account for
the fact that different speakers might behave differ-

ently when addressing the robot vs. a human. We
added utterances and number of robot-directed utter-
ances as random factors. The final model structure
was: lmer (feature ˜ Addresses+ (1|Speaker Id)+
(1|Uttrance) + (1|RDS uttrances).

3 Experimental results

We examined the global level differences between
human-directed speech and robot-directed speech in
comparison to the robot voice. This analysis helps to
investigate if our speakers behave differently when
speaking to a human vs. the robot in respect to the
analyzed features.

Figure 3 shows the percentage of utterances each
speaker used to address human vs. addressing Furhat.
In general the speakers talk to their human inter-
locutors more than Furhat. With regard to utterance
duration, we found a significant difference between
HDS and RDS (Est. = −0.179, t = −2.72, p =
.00683); utterances are longer when they are addressed
to robot than when addressed to human.

Intensity: 70% of the speakers talk louder to
the robot in comparison to their human interlocutors.
There are two potential explanations: (a) speakers’
intuition that the robot might have difficulties in un-

© 2022 The Authors. This is an open access article under the CC BY license. DOI: 10.6094/UNIFR/223822 8
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Figure 4: Fundamental frequency when speaking to
human vs. speaking to robot

derstanding their speech in comparison to a human
interlocutor, or (b) due to different distances of the
interlocutors. Therefore, Intensity measures were
excluded from analysis.

Fundamental frequency: Figure 4 show the re-
sults of fundamental frequency of HDS (to Human)
vs. RDS (to Robot). Even though Figure 4 indi-
cates that RDS has higher fundamental frequency
than HDS, the difference is not significant (Est. =
4.99, t = 1.75, p = .084), while comparing RDS to
the robot voice in the interactions, we found a sig-
nificant difference (Est. = −14.62, t = −3.22, p =
.00214).

Speaking rate: Figure 5 shows the speaking
rate of HDS vs. RDS. As expected, speech towards
the robot is significantly slower than speech towards
a human (Est. = −35.56, t = −3.18, p = .00325).
However, when comparing RDS to the robot voice in
the interactions, we did not find any significant dif-
ference (Est. = −0.454, t = −0.032, p = .974).
Those results align with literature where speakers
are likely to speak slower than usual when speaking
with computers and systems (e.g. Alexa) [12].

4 Discussion and conclusion

In light of the recent advances of social robots, the
multiparty human-robot interaction is becoming more
and more integrated into our everyday life, which
might effect humans’ perception of robots. Our ques-
tion is whether well known speaking style (robot-
directed speech) can be observed in naturalistic set-

Figure 5: Speaking rate when speaking to human vs.
speaking to robot

ting. In this study, we present a global-level analysis
of human-directed speech and robot-directed speech
in multi-party interactions. Our findings provide ev-
idence for inter-speaker dynamics when speaking to
a human vs. a robot. The results show that there are
significant differences between human- and robot-
directed speech for speaking rate and the total utter-
ance duration. Those results demonstrate that speak-
ers change and modulate their speech alternatively
when speaking to robot vs. when speaking to hu-
mans for the sake of increasing their speech intelli-
gibility to the robot. These results might have been
partly due to the fact that the interactions took place
in a noisy environment (a museum) [17]. To con-
clude, the robot-directed speech effect is still robust
when speakers spontaneously switch turns between
human and robot in naturalistic setting.

References

[1] S. Kriz, G. Anderson, M. Bugajska, and J. G.
Trafton, “Robot-directed speech as a means
of exploring conceptualizations of robots,” in
Proceedings of the 4th ACM/IEEE Interna-
tional Conference on Human Robot Interac-
tion, ser. HRI ’09. New York, NY, USA: As-
sociation for Computing Machinery, 2009, p.
271–272.

[2] H. P. Branigan, M. J. Pickering, J. Pearson, and
J. F. McLean, “Linguistic alignment between
people and computers,” Journal of Pragmatics,

© 2022 The Authors. This is an open access article under the CC BY license. DOI: 10.6094/UNIFR/223822 9



OMNIA IBRAHIM, GABRIEL SKANTZE SPOHUMA21

vol. 42, no. 9, pp. 2355–2368, 2010, how peo-
ple talk to Robots and Computers.

[3] E. Shriberg, A. Stolcke, D. Hakkani-Tür, and
L. Heck, “Learning when to listen: Detecting
system-addressed speech in human-human-
computer dialog,” in Thirteenth Annual Con-
ference of the International Speech Communi-
cation Association, 2012.

[4] M. Katzenmaier, R. Stiefelhagen, and
T. Schultz, “Identifying the addressee in
human-human-robot interactions based on
head pose and speech,” in Proceedings of the
6th international conference on Multimodal
interfaces, 2004, pp. 144–151.

[5] A. Bradlow, Confluent talker- and listener-
related forces in clear speech production.
Mouton de Gruyter, 2002, pp. 241–273.

[6] Lindblom, Explaining Phonetic Variation: A
Sketch of the H&H Theory, 1990, p. 403–439.
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and B. Möbius, “Comparing phonetic changes
in computer-directed and human-directed
speech,” in Studientexte zur Sprachkommu-
nikation: Elektronische Sprachsignalverar-
beitung 2019, P. Birkholz and S. Stone, Eds.
TUDpress, Dresden, 2019, pp. 42–49.

[12] E. Raveh, I. Siegert, I. Steiner, I. Gessinger,
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Abstract

The central issue for the wider use of speech-based
technical systems is the proper recognition of speech.
But as spontaneous human speech has a lot of dis-
fluencies and variations, even state-of-the-art ASR
engines are posed with difficulties. One possibility
to overcome this issue is the combination of differ-
ent ASR outputs. In this paper ROVER, a popu-
lar ASR output combination method is applied for
spontaneous German device-directed utterances dis-
tinguishing high-quality clean and noisy spontaneous
speech samples. Using ROVER, in this paper, a rel-
ative error reduction of about 10% is achieved. For
noisy speech data insignificant error reduction, due
to high variance in error rate among individual tran-
scriptions, is observed.

1 Introduction

Speech-based interaction with technical systems has
been on a rise since the last decade [1]. Such inter-
actions are mainly realized using a voice assistant
and use an Automatic Speech Recognition (ASR)
system that outputs a sequence of words or sen-
tences spoken by identifying and converting the in-
put speech segments into text. Human speech has a
lot of variations in its pronunciation, accents, pitch,
dialects, etc. [2] and developing a system to recog-
nize speech accurately is challenging [3].

ASRs are used for several applications such
as dictation systems in medical systems, the auto-
motive industry, or day-to-day use on mobile de-
vices [4]. Developing ASR systems for specific ap-
plications from scratch requires a large amount of
data and long hours of training.

To facilitate such needs, a speech-API, available
as offline or cloud-based services, is quite useful and
provides a convenient interface. The choice of an

ASR service depends on its performance which dif-
fers e.g. with the quality of input speech data (w/wo
background noise), direct or spontaneous speech,
recognition algorithms. The accuracy of ASR sys-
tems is then usually evaluated using performance
metrics like word error rate (WER), to name just the
most prominent one [5].

Continuous improvements have been made to
reach human parity [6]. While several ASRs provide
transcriptions with varying accuracy, the approach
that should be discussed in the following is to im-
prove the overall WER by combining transcriptions
from multiple ASR systems having different con-
figurations. Thereby, this contribution investigates
spontaneous German interactions between humans
and a modern voice assistant using a popular com-
bination method called Recognition Output Voting
Error Reduction (ROVER) [7] by combining 1-best
hypothesis (transcriptions) from each of three differ-
ent ASR services, namely Google Cloud speech-to-
text, IBM Watson and Wit.ai from a python library
called SpeechRecognition [8]. The experiments uti-
lized German conversational speech as ASR accu-
racy still lags for German in comparison to En-
glish [9, 10].

The remainder of the paper is as follows: Sec-
tion 2 gives some background on related work. Sec-
tion 3 introduces the methods and data used. Section
4 explains the experiments. The results are shown in
Section 5. Section 6 discusses the limitations to the
method chosen and further improvements.

2 Background and Related Work

While many studies have been conducted on En-
glish speech samples, other languages’ ASR perfor-
mances are investigated seldom. The authors of [9]
compared the performance of cloud-based ASR ser-
vices (as used in this paper) on German conversa-
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tions and reported 17%-74% WER for noisy speech,
while for clean speech Wit.ai achieves lowest with
8% WER. Another study investigated Sphinx4’s
performance on spontaneous Upper Saxon German
speech [11], showing 77% WER for spontaneous
speech and 51% WER for read speech. For Ro-
manian using Google Speech, the authors of [12]
reported 31% WER for a corpus of 20 YouTube
videos.

The possibility of reducing the WER can be
explored by further analyzing the cause of errors
and also combining hypotheses from multiple ASR
services. Some of the studies used methods like
ROVER, BAYCOM, or other enhanced versions of
ROVER, cf. [7, 13, 14]. ROVER can also be used
to combine at sentence level or combine N-best hy-
potheses [15]. Similar work as in the current paper is
reported for other languages such as [16] on Slovak
using ROVER, or on Malay broadcast news [17].

3 Methodology

3.1 Performance Metrics

The recognition error is evaluated by comparing
the ASR systems’ hypothesis text (H) to its ground
truth (R) using the following metrics:

Word error rate (WER) is calculated by eval-
uating the minimum edit distance. It counts the total
number of deleted (D), substituted (S), and inserted
(I) words in H over the total number of words (N )
in the ground truth text [18]:

WER = S+D+I
N ∗ 100 (1)

Often WER can be more than 100%, for instance,
when the length of hypothesis text is much larger
than the ground truth [19].
Match error rate (MER) is the probability of a
match being incorrect [19]. In contrast to WER,
MER considers matching word-pairs (M) as well:

MER = S+D+I
N=M+S+D+I ∗ 100 (2)

Word information lost (WIL) is based on the Mu-
tual Information (MI), which provides a measure of
the statistical dependence between the input words
X and the output words Y in the unordered set of
I/O word pairs obtained by I/O alignment: [19].

WIL = 1 − H(Y |X)
H(Y ) (3)

Another metric that helps to determine the ac-
curacy of ASR transcription is the confidence score
(CS). It indicates the reliability of the recognition re-
sult [20]. The success of speech applications is de-
termined by the quality of the confidence measure.

3.2 Combining Multiple ASR Hypotheses

A common method to combine several ASR hy-
potheses texts is ROVER, developed at NIST [7].
It aims to reduce the recognition error by exploit-
ing differences in the nature of the errors in dif-
ferebt ASR output text. ROVER produces a com-
posite hypothesis using transcriptions from multi-
ple ASR systems where the best word hypothesis
is voted at every word instance [7]. This algorithm
can be categorized into two phases, as shown in Fig-
ure 1. For N ASR systems, we have N hypothesis
i.e., ASR1, ASR2, .., ASRN .

Figure 1: Combination of ASR outputs using
ROVER - architecture

Phase 1 is forming a composite Word Transition
Network (WTN), as shown in Figure 2, by aligning
two hypotheses (for e.g., ASR1 and ASR2) having
the lowest error rate. Alignments are done iteratively
over all ASR hypothesis. Figure 2 shows an exam-
ple of a composite WTN when three ASR hypoth-
esis texts are aligned. For any occurrence of miss-
ing words during alignments, a null word transition
(”@”) is assigned.

Figure 2: An example of Word Transition Network,
taken from [7]. The different words are depicted by
the letters a to f and z (substituted word). ”@” is a
null word transition signifying a missing word.

In phase 2, a voting mechanism is employed.
A word score is calculated by the weighted sum of
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word confidence scores C(wi) and the number of
occurrences N(wi) for each word using equation 4.
Each word is assigned its word score and the highest
scoring word is chosen from each set of words from
the WTN to form a combined text:

Score(wi) = α(N(wi)
Ns

) + (1 − α)C(wi) (4)

The number of occurrence is normalized to unity
by number of hypothesis used for combination Ns.
In Figure 2, Ns is 3. The weighting factor α is ap-
plied to control the importance among C(wi) and
N(wi), which ranges between 0 and 1. A lower α
value means that a higher weight is given to the word
confidence score.

4 Experimental Setup

4.1 Dataset

This study focuses on spontaneous Human-
Computer Interaction (HCI) at two different
qualities. Spontaneous speech is characterized
by having scruffy grammatical phrases, self-
corrections, hesitations, disfluencies, realistic
turn-taking, or prosodic variations, which are
quite challenging even for state-of-the-art ASR
engines. Therefore, two datasets: Voice Assistant
Conversation in the wild (VACW) and Voice Assis-
tant Conversation Corpus (VACC), were selected
for this study. VACW consists of unconstrained
German conversations between a voice assistant and
humans, comprising different types of background
noise, in a public environment. VACC consists
of conversations between one or more speakers
and a voice assistant recorded under high-quality
conditions. For further details, see [21, 22]. In the
actual investigation, three sets – each consisting of
100 randomly selected audio files – of both datasets
each are used.

4.2 Selected speech recognition services

This study relies on three online speech services:
Google Cloud Speech API (GC), IBM Watson
Speech-to-Text (IBM), and Wit.ai (WIT). They are
accessible through the SpeechRecognition library
using python language (for details see [8]). Au-
dio files were sent to ASR-API server via an HTTP
request. The API responds with a set of informa-
tion such as transcription, sentence-level confidence

score or word-level confidence score, word time-
stamps, for example. Other online ASR services in
SpeechRecognition library do not deliver the confi-
dence score needed for hypothesis combination and
were thus omitted.

4.3 Processing pipeline

Figure 3: Processing Pipeline

Post-processing transforms the ASR output text
to match the style of ground truth for error rate cal-
culations. Upon evaluating error rates of all the se-
lected files, post-processed transcriptions are chosen
to combine the three ASR transcriptions, from GC,
IBM and WIT, using ROVER. The ASR transcrip-
tions used for combination are selected only if all
the three transcriptions incur at least one erroneous
word in all three transcriptions for a selected audio
file. When all the three transcriptions are same, the
final output transcription is the original transcrip-
tion as there is no scope of reducing error rate fur-
ther. Two ASR transcriptions, having the lowest
WER, are aligned together on word-level using the
Needleman-Wunsch algorithm [23] and then, further
aligned with the third transcription text to form a
composite WTN as shown in Figure 2. A ROVER
scoring mechanism is used to vote the best word hy-
pothesis at each word transition, as explained in sec-
tion 3.2. The overall processing pipeline as shown
in Figure 3, iterates over all the selected audio files.

5 Results and Analysis

5.1 ASR performance

In this section the experimental results are presented
on three test set each consisting of 100 audio files
of HCI clean (VACC) and HCI noisy (VACW) each.
Figure 4 shows the WER for each set of the two cor-
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pora evaluating each ASR. Noisy data reports the
highest error rates. On comparing all the results,
IBM is the least accurate with WER ranging from
13% for VACC to 56% for VACW. While for noisy
speech (VACW), the WER ranged between 19% -
56% with the worst accuracy being from IBM Wat-
son, for clean speech (VACC) GC performed best at
4% WER.

GC WIT IBM
0

20

40

60

W
E

R
%

VACC
VACW

Figure 4: Word error rate (averaged over the three
sets) for each corpus and each ASR engine.

An example, in Table 1, shows ”antonio
meyuki” is misrecognized as it is a noun, which is
probably rare in the training data. One way to rec-
ognize such words is if the use-case is specified and
provides word hints, which is known as speech adap-
tation. Additionally, WIT recognized ”erfand” (in
English, invented) as two separate words ”er fand”
(in English, he found). While WER is same for
WIT and IBM, the errors are not. This provides the
grounds to further explore the possibility of combin-
ing such ASR transcriptions by choosing the most
accurate word from each of them forming an im-
proved transcription.

Table 1: Example of errors in ASR transcription.
Ground Truth: erfand antonio meyuki das telefon
ASR Hypothesis WER MER WIL
GC erfand antonio miyuki

das telefon
0.2 0.2 0.36

WIT er fand antonioki das
telefon

0.6 0.6 0.84

IBM erfand antonio um mir
yuki das telefon

0.6 0.43 0.54

5.2 Combination results using ROVER

In Table 2, the ground truth is ”alexa wie”. GC and
WIT recognize only the first word ”alexa” and there-
fore, an ”@” is placed at the second-word position
because of deletion. IBM recognizes the word ”wie”

correctly. The confidence score of ”@” is not pre-
defined by ASRs, so, in this experiment, C(@) val-
ues varying between 0 and 1 were tested to find the
optimal value, which is C(@) = 0.45. Ergo, com-
bined hypothesis at α = 0 performed with 100% ac-
curacy.

Table 2: An example of the combination of ASR
hypothesis for different α values using ROVER.

Ground Truth: ”alexa wie”
WTN WER

GC alexa @ 0.5
word-conf 0.92 0.45
WIT alexa @ 0.5
word-conf 1 0.45
IBM alexander wie 0.5
word-conf 0.54 0.51
α = 0 alexa wie 0
α = 0.2 alexa @ 0.5
α = 0.5 alexa @ 0.5
α = 0.7 alexa @ 0.5
α = 1 alexa @ 0.5

Figure 5 shows the relative WER reduction of
approx. 10% for VACC, achieving 96% accuracy
with ROVER. The error rate for VACW is still rel-
atively very high due to the high variance in WER
caused by the three ASRs (GC and WIT versus
IBM). The use of the ROVER method is only advan-
tageous when original ASR WERs are closer than
apart.

VACC (clean) VACW (noisy)
0

20

40

60

W
E

R
%

GC WIT
IBM ROVER

Figure 5: Improvements in ASR performance using
ROVER over original transcriptions.

In Table 3, the highest relative error reduction
of 9% (WER) is seen for α values between 0 - 0.2.
This means, word-level confidence scores are given
80% to 100% weightage in equation 4. Whereas,
giving more weight to the frequency of word oc-
currence (i.e., α = 0.5 - 1) yields only 4% rela-
tive error reduction for HCI Clean. As a result of
the high variance in ASR error rates in HCI Noisy
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Table 3: WER (average of three sets) before and af-
ter hypothesis combination for different α values.

ASR HCI Clean HCI Noisy
GC 0.04 0.19
WIT 0.08 0.24
IBM 0.13 0.56
ROVER with α = 0 0.033 0.2
ROVER with α = 0.2 0.04 0.25
ROVER with α = 0.5 0.068 0.28
ROVER with α = 0.7 0.08 0.29
ROVER with α = 1 0.09 0.3

audio data, ROVER’s combined transcription with
lowest error rate is still higher than the best perform-
ing ASR, even though the relative WER reduction is
between 26% - 36%. That said, error reduction us-
ing ROVER for α values 0.5 and less provides more
accurate transcriptions. It is safe to say that, confi-
dence scores play a major role in the evaluation of
ASR performance.

6 Limitations and Conclusion

Hypothesis combination using ROVER requires
ASRs to provide WER with low variance to achieve
any significant improvement in ASR performance.
Furthermore, important scores from the ASR system
during the decoding process are disregarded such
as posterior probabilities of words. Since, in this
experiment, APIs are used to access ASR services,
only a limited set of parameters can be obtained. In
addition, the selected ASRs are closed source ser-
vices. This forbids information such as differences
between ASR systems could be exploited in princi-
ple within such an approach in order to optimize the
performance.

This paper contributes towards analyzing ASR
performance for unconstrained spontaneous German
conversation speech in noisy and quiet environments
and further investigate the ROVER method for tran-
scriptions combination to reduce the errors. Using
ROVER, a relative word error reduction of approx.
10% using confidence scores was achieved. Combi-
nation transcription of noisy speech data has a sig-
nificantly high error rate, due to high variance in er-
ror rate among individual transcriptions. While we
achieved reduced error rates, further investigations
could be made to use better scoring methods.
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Abstract

Popular voice assistants like Amazon’s Alexa and
Apple’s Siri commonly have a default female-sound-
ing voice. As these devices become more common-
place in society, the potential socio-indexical propri-
eties perpetuated by the voices should be considered,
especially related to gender ideologies and stereo-
type perpetuation.

This study analyzed Alexa and Siri’s fundamen-
tal frequency (F0) values for responses to fact-based,
opinion-based, and emotion-based prompts to see if
there existed a correlation between the results and
average F0 values of a perceived attractive adult fe-
male voice (220Hz - 260Hz, noting that higher F0
values in this range were perceived as more attrac-
tive).

Findings showed that Siri’s F0 values were sig-
nificantly higher than Alexa’s F0 values overall. Re-
sponses to fact-based prompts were statistically lo-
wer than responses to emotion-based responses. The-
re was no statistical significance between emotion-
and opinion-based responses.This paper serves as a
starting point in a larger conversation regarding what
social characterizations virtual assistant voices in-
dex and how machine voices have the potential to re-
flects societal gender expectations and stereotypes.

1 Introduction

People commonly interact with voice-generating ma-
chine-learning programs through virtual assistants
such as Apple’s Siri, Amazon’s Alexa, Microsoft’s
Cortana, and Google Home. Virtual assistants are
defined in this paper as any voice-based assistants
that do not have any physical representation or man-
ifestation attached to them. The assistant is com-
pletely operated by machine-learning capabilities a-
nd has the goal of providing humans with informa-
tion or to perform tasks virtually.

Virtual assistants (such as Amazon’s Alexa) com-
monly employ female-sounding voices as the default
setting. With consideration to the role virtual as-
sistants play in the lives of human users, this paper
aims to better understand what type of human voice
the virtual assistant voice embodies based on F0 and
how that characterization fits within (in this case)
US societal gender expectations or stereotypes. As
a starting point into a more complex conversation
about the social characteristics indexed by a virtual
assistant machine-generated voice, this paper focused
on assessing if a correlation between F0 and vocal
attractiveness exists for Siri and Alexa. All results
were analyzed with the understanding that factors
such as voice clarity, intelligibility, and effectiveness
are crucial influences in voice design and linguistic
factors such vowel length, F1, and F2 influence vo-
cal attractiveness perceptions.

1.1 Female Subservience Stereotypes

Popular culture in the United States maintains a stereo-
type that women are best suited for assistant-type
roles, and that the best assistants are women. Women,
in turn, are more likely to be perceived as assistants
rather than leaders [1]. Stereotypes about women
being subservient also include women being perceived
as ”pushy” or ”bossy” when placed into a socially
dominant role, such as a boss or team leader. Men
are stereotypically seen as effective leaders while
women are considered more apt at secretarial duties
[2]. Female subservience stereotypes will be defined
in this paper, as the stereotype that women are bet-
ter suited for subservient roles, especially if a male
figure is present.

As it pertains to virtual assistants, it is notewor-
thy that popular virtual assistants, including Apple’s
Siri and Amazon’s Alexa have distinctively female-
sounding voices set as the default for users. It should
also be noted that the latest version of Apple’s Siri
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(as of March 2021) does not assign a default English-
speaking voice for Siri. Instead of the previous female-
sounding default, users select their preferred Siri voice
when setting-up the device [3]. This is a recent change
though and does not indicate whether users still as-
sociate Siri with the original female-sounding voice.
Popular virtual assistants overwhelmingly being as-
signed a female-sounding voice is interesting when
considering if virtual assistant voices have the power
to perpetuate female subservience stereotypes.

In addition, it should be considered that the type
of female or femininity being portrayed within the
scope of female subservience stereotypes can differ.
One possible version of this stereotype is one that as-
sociates attractiveness with female subservience [4].
This paper will focus on starting to gain an under-
standing of what type of femininity is portrayed by
virtual assistant voices.

1.2 Early Versions of Virtual Assistants

In early versions of Siri, the virtual assistant was
”imbued with an overt personality, [could] carry on
non-task related interactions, such as telling jokes,
and [had] distinct identity characteristics” [5]. Early
versions of Siri and Alexa were flirtatious and em-
ployed responses that reflected the female subservience
stereotype, including that a female assistant should
be flirty, openly sexual, and submissive. For exam-
ple, the only sexual request Siri would refuse early
on was if Siri was asked outwardly to engage in sex-
ual intercourse. The response would include Siri
saying ”You have the wrong type of assistant” [6].
This response evades the sexual comment and al-
ludes to there being a type of female assistant that
should willingly accept a sexual proposition.

Companies such as Apple and Amazon have since
worked to minimize utterance content that was a higher
risk for being encoded with unconscious stereotypes
about how a female-sounding voice should respond
via submissive and flirtatious language [7]. One change
involved replacing flirtatious responses with more
neutral cases such as ”I’m sorry, I didn’t understand
that” or by having the virtual assistant not respond
at all.

1.3 Gender Bias in Machine Learning

Virtual assistants being commonly programmed with
a female-sounding default voice suggests a connec-

tion between societal gender stereotypes and uncon-
scious gender bias in machine learning. Gender bias
in this paper is understood as a machine-language
system learning to favor one particular gender over
another or to exhibit stereotypical language features
of a gender.

A 2019 analysis of the technology companies
that develop virtual assistants show that only between
10 and 15 percent of researchers on development
teams were women [8]. A limited female perspec-
tive in the early stages of programming may lead to
conversations around sexuality and perceived femi-
ninity not happening at the necessary scale in order
to anticipate the learning of stereotypical responses
or the types of sexist remarks that could be said to
the virtual assistant by the user. It should also be
noted that how feminine the voice of the virtual as-
sistant or automated voice sounds is a choice made
at least in part by the people building the programs.

Regardless of potential linguistic implications of
creating female-voiced virtual assistants, there are
corporate motivations for choosing a female voice
such as marketability and intelligibility [9]. The in-
tention or motivation may not consciously be to rein-
force female subservience stereotyping, but the lin-
guistic qualities of virtual assistant voices have po-
tential to play into or even reinforce societal expec-
tations around gender given the role of the virtual
assistants in society.

1.4 F0 and Vocal Attractiveness

Attractiveness is often tied to conversations about
femininity. As a starting point in assessing the type
or types of femininity portrayed by virtual assistants,
vocal attractiveness will serve as a starting point.
Vocal attractiveness is highly subjective based on
factors, such as the hearer’s preferences, age, cul-
ture, and sexuality ([10],[11],[12],[13]). There are a
multitude of linguistic factors that dictate and shape
vocal attractiveness, such as vowel shape, timbre,
and creaky voice ([14],[15],[16]). Given previous
studies connecting F0 to vocal attractiveness, the fol-
lowing experiment will first analyze the F0 of Siri
and Alexa.

In a 2011 study by Borkowska and Pawlowski,
polish-speaking participants were asked to rank female-
sounding voices in terms of attractiveness. Findings
showed that the listener’s perceived attractiveness of

© 2022 The Author. This is an open access article under the CC BY license. DOI: 10.6094/UNIFR/223819 18



ALYSSA ALLEN SPOHUMA21

a voice fit a bell curve model where F0 values be-
tween 220 Hz to 262 Hz was typically viewed as as-
sociated with attractive female voices. Voices with
F0 values between 262 Hz to 282 Hz were still at-
tractive but starting to decline in perceived attrac-
tiveness, meaning that the impact of raising the pitch
started to have a reverse effect on a higher perceived
attractiveness rating. Voices with F0 ranges below
220 Hz were perceived as least attractive. Noting
that the lower the F0 under this point, the less attrac-
tive the voice was perceived [17]. When the voice
has an average F0 between 220Hz to 262Hz, the
voice is more likely to be viewed as feminine, youth-
ful, and flirtatious [18].

A similar range of attractive F0 was found by
Feinberg and colleagues in a 2008 perception study
done with Scottish-English. Results were discussed
in relative terms. Based on a sample of adult female
voices, a low F0 at 200 Hz, an average F0 at 220 Hz,
and a high F0 at 241Hz was selected. Each starting
F0 value was raised and lowered by factors of 20Hz,
keeping all other formants stable. Participants were
tasked with rating vocal attractiveness for each voice
compared to its raised and lowered forms.

Findings showed that male listeners ranked higher
F0 values as more attractive for each starting F0.
The study did not test F0 values above 261Hz, so it
is not clear if there is a F0 value higher than 261Hz
that would be perceived as less attractive. For fe-
male listeners, raised F0 values are also preferred,
but the difference in preference when the voice was
raised from 200 to 220Hz was significantly larger
than when F0 was raised from 240Hz to 261Hz. This
suggests there will be a point at which raising the F0
will not increase perceived attractiveness [19].

While this study does not identify a defined at-
tractiveness range, it demonstrates that higher F0 val-
ues were perceived as more attractive female voices
for both male and female listeners, at least up to the
tested range. Feinberg and colleague’s study also
suggests that there may be a limit (around 260Hz) at
which point raising the F0 value does not equate to
an increase in perceived attractiveness.

Because an F0 range of 220 Hz - 260 Hz in both
cases appears to be perceived as particularly attrac-
tive in Polish and Scottish English, this range will be
used as a reference point for this study. Both of the
aforementioned studies work with specific cultures
and may not be completely transferable to a study

with American English, but should be considered a
reliable reference point.

The following experiment aims to gain a bet-
ter understanding of the average F0 values of Siri
and Alexa’s English-speaking voices and determine
if there is a correlation between the F0 of virtual as-
sistants and a perceived attractive adult female voice.
Findings will be analyzed as it relates to what type
of femininity the virtual assistants’ voices index.

2 Research Methods and Stimulus

For this study, Siri and Alexa were asked the same
set of 15 prompts. These prompts included five fact-
based prompts, five emotion-based prompts, and five
opinion-based prompts. The prompts were as fol-
lows:

1. What is the weather today?

2. How do I get to my home?

3. Who is the current president?

4. Who is the highest paid actor?

5. Who is the highest paid actress?

6. I’m sad.

7. You’re pretty.

8. I’m lonely.

9. Will you be my friend?

10. Will you always be there to help me?

11. Do you think men and women are equal?

12. What should I have for dinner?

13. Do you think I should become an influencer?

14. What do you think is a good gift?

15. What should I name my cat?

Prompt types were defined as the following: fact-
based prompts (1-5) require factual answers; emotion-
based prompts (6-10) require the virtual assistant to
have a basic understanding of human emotion; opinion-
based prompts (11-15) require the virtual assistant
to provide opinions on current social issues or the
speaker’s personal life choices. Prompt type was
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varied in order to not outweigh any one particular
utterance type to get a sense of the assistants’ sensi-
tivity to context.

Responses were recorded using Praat software.
Each response was analyzed for minimum F0, max-
imum F0, and average F0. All recordings were then
cumulatively analyzed for average minimum F0, av-
erage maximum F0, and overall average F0.

The F0 ranges of Siri and Alexa were then ana-
lyzed against that of an attractive adult female voice
F0 range. As discussed in the previous section, the
F0 range of a perceived attractive female voice for
this study will be 220Hz to 260Hz. The results will
be analyzed with the understanding that higher F0
values are perceived as more attractive than lower
F0 values, with possible attenuation or reversal of
this trend above 260Hz.

3 Results

For Siri, fact-based questions resulted in an average
minimum F0 of 144Hz, an average maximum F0
324Hz and an overall average F0 of 220Hz. Emotion-
based questions resulted in an average minimum F0
of 159Hz, an average maximum F0 of 328Hz and an
overall average F0 of 222Hz. Opinion-based ques-
tions resulted in an average minimum F0 of 144Hz,
an average maximum F0 341Hz and an overall av-
erage F0 of 228Hz. Across categories, Siri’s overall
average F0 was 235Hz.

For Alexa, fact-based questions resulted in an
average minimum F0 of 125Hz, an average max-
imum F0 of 353Hz and an overall average F0 of
194Hz. Emotion-based questions resulted in an av-
erage minimum F0 of 107Hz, an average maximum
F0 of 264Hz and an overall average F0 of 224Hz.
Opinion-based questions resulted in an average min-
imum F0 of 135Hz, an average maximum F0 324Hz
and an overall average F0 of 212Hz. Across cate-
gories, the overall average F0 was 210Hz.

Figure 1: Average F0 per prompt category.

Shown in Figure 1 (above), Siri and Alexa’s av-
erage F0 values in the fact-based category were the
lowest compared to emotion-based and opinion-based

F0 values. Fact-based response F0 values were sig-
nificantly lower than emotion-based response F0 val-
ues by an estimated -22.5 Hz. There is no statisti-
cal significance between the F0 values for emotion-
based and opinion-based responses.

Of note, a number of responses to emotion- and
opinion-based prompts included facts or directives
similar to the content found in responses to fact-
based prompts, indicating that the utterance content
was not a determining factor in F0 per category. For
example, Siri’s response to the emotion-based prompt,
”Will you always be there to help me?” yielded an
F0 of 287Hz. Utterance content was as follows: ”I’m
here to help! Get to know Siri at Apple dot com.”
Siri’s average F0 value remained high, even though a
directive comprised the second part of the response.

Regarding the female vocal attractiveness F0 range
(220Hz to 260Hz), Siri’s average F0 for responses
to fact-based prompts correlated with the low end of
the reference range at 220Hz. Alexa dropped below
the reference range in the fact-based category with
an F0 value of 194Hz.

Figure 2: Overall average F0 values for Siri and
Alexa across prompt categories.

As seen in Figure 2 (above), Siri and Alexa’s
overall average F0 values for the study. Siri has a
higher overall F0 average than Alexa’s overall aver-
age F0, at 235Hz and 210Hz respectively. The dif-
ference between Siri’s F0 average and Alexa’s F0
average was statistically significant with a p value ¡
0.01.

While the average F0 of Siri could have been
programmed to be higher, and potentially be per-
ceived as even more attractive, 235Hz correlated with
the reference range. Alexa’s F0 value fell slightly
below the reference range, but also could have been
programmed to be lower in F0.
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4 Discussion

Across all categories tested, Siri’s response F0 val-
ues were significantly higher than Siri’s response F0
values. Therefore, even if the F0 value fell below
the reference range of 220 - 260Hz, it is likely that
Siri will be perceived as more attractive than Alexa
before considering any other formants or vocal qual-
ities.

This study also determined that the F0 of re-
sponses to fact-based prompts were significantly lower
than the F0 values of responses to emotion-based
and opinion-based prompts. Empirically, this seemed
to be, at least in part, due to the virtual assistant read-
ing directly from a source to answer fact-based ques-
tions. For example, responses from Siri and Alexa
to fact-based prompts commonly included ”Accord-
ing to [source]...” before providing the information
required by the prompt.

As discussed previously, popular virtual assis-
tant voices commonly having a female-sounding voice
set as the default could by itself potentially reinforce
a female-subservience stereotype given the role vir-
tual assistants have in society. This study provides
an initial finding in a larger conversation around the
type of femininity being portrayed by the virtual as-
sistant voices and motivates further questions about
the social characteristics potentially indexed by dis-
embodied machine voices.

5 Considerations and Future Research

Considerations for this study include expanding the
number of questions per category to create a more
robust data set and controlling for utterance length.

Future research in this topic could include re-
peating this study with other popular virtual assis-
tants and analyzing user perceptions directly. Re-
sults from the user perception study could then be
compared to the findings in this paper.

This study assessed only English-language re-
sponses from Siri and Alexa. Future research could
also expand into other languages such as French and
Spanish. Tests done in other languages will need to
consider beauty standards and stereotypes present in
cultures predominantly using the focus languages.

6 Conclusion

The results suggest that although certain phrases ex-
plicitly perpetuating female subservience stereotypes
were removed from current versions of virtual assis-
tants, there is a connection between virtual assistant
F0 and the F0 range of a perceived attractive adult
female used in this study.

Overall, the results from this study help to begin
dissecting questions around how these disembodied
machine-generated voices take up space in our hu-
man and naturally social society, including its po-
tential ability to impact human perceptions or shape
and reinforce stereotypes.

This paper serves as a preliminary study to be-
gin a deeper and more nuanced conversation about
the connection between the vocal qualities of dis-
embodied machine-driven voices and social implica-
tions such as unconscious stereotype reinforcement.
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Abstract

Current voice assistants are predominantly modeled
as female and often respond positively to sexual
harassment, which according to UNESCO has the
potential to reinforce negative gender biases and
stereotypes. In the following study, we evaluated
alternative responses to sexual harassment and their
relation to the assistants’ gender. In an online study,
77 participants rated the appropriateness of the
assistants’ responses to sexual harassment while the
gender of the artificial voice was manipulated and
compared the ratings to appropriateness scores
collected with no voice-based gender information
present, i.e. text-only. Results showed an
interaction between gender and the response
category. We found that the perceived
appropriateness changed when spoken by a male
voice, in accordance to previous no-voice ratings.
However, we observed no clear difference in
appropriateness levels when spoken by a female
voice. We assume that this relationship is due to
conflicting stereotypical expectations regarding
women’s responses to sexual harassment – where
neither response is considered appropriate.

1 Introduction

A recent report by UNESCO raised the question
whether voice assistants’ replies such as “I’d blush
if I could” are an appropriate response to sexual
harassment [1]. Voice assistants are artificial agents
that communicate using speech. They are often
designed to have female voices and names and act
subservient [1–3]. According to the UNESCO, a
wide variety of problems result from this
dominance of female-only voice assistants,
including the reinforcement of gender stereotypes
and biases, the perception of females as tolerant of

poor treatment, and the normalisation of
harassment [1].

Indeed, sexual harassment (i.e., unwanted
behavior of a sexual nature [4]) is a prevalent
problem in interactions with voice assistants, with
numbers reported from 5 [5] to 10% [6]. Voice
assistants themselves are unlikely to experience
harm through this form of gender based violence.
However, abuse should still be discouraged as
previous research found that human-machine
interaction can transfer to human-human interaction
and there is thus the possibility that this behaviour
is promoted towards people [7].

Until recently, voice assistants often playfully
deflected abuse or even responded positively [8].
Similar results were found by [5], where 22% of
responses were labeled ‘positive’, including flirting,
playing along or joking. In a follow-on study, [9]
evaluated the “perceived appropriateness” of
responses of current conversational systems to
certain types of abuse using crowd-based evaluation
of text. Their results showed that polite refusal was
found to be most appropriate while flirtation and
retaliation were perceived least appropriate [9].

In this research, we investigate the influence of
the interlocutors’ gender on what response is
deemed to be appropriate. Previous research on
human-human conversations found that the
perceived appropriateness of an utterance in
emotionally charged contexts, such as abuse, is
influenced by gender – possibly due to gender role
stereotypes and gender expectations [10–15].
Similarly, research in human-robot interaction
investigating gender stereotypes and gender biases
found that stereotypes are also applied to
robots [16–19]. Appropriateness might thus also be
influenced by both the gender of the voice assistant
as well as by the gender of the participant. In the
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following study, we investigate whether the
perceived appropriateness of responses to sexual
harassment of voice assistants is influenced by the
gender of the voice assistant, participants’ gender,
and the response category.

2 Data collection

2.1 Sample

We conducted an online study with 77 (57% male,
43% female, mage = 33.5, SDage = 11.4)
crowd-working participants using Prolific [20].1

Participants were native English-speakers from the
United Kingdom (53%), the USA (35%), Australia
(6%), New Zealand (3%), and other countries (3%).

2.2 Methodology

Participants were asked to rate the social
appropriateness of eight audio recorded responses
(e.g. “I like you, as a friend.”) to sexually sensitive
prompts (e.g., ”Do you want to kiss me?”). The text
stimuli were collected by [5, 9]. The authors
collected abusive utterances from users and used
these to sample responses from a range of
state-of-the-art voice assistants and chat-bots. The
responses were annotated into 14 response
categories and rated on appropriateness from
crowd-workers. We selected a sub-set of the
collected responses, where half of the responses
belonged to the category labelled as ’polite refusal’
and half as ’flirtation’. ’Polite refusal’ includes
answers such as ”That is not something I feel
compelled to answer”, while ’flirtation’ entails
answers like ”In the cloud no one knows what
you’re wearing”. In [9], these two categories were
on opposite ends of the spectrum: ’Polite refusal’
was perceived highly appropriate whereas
’flirtation’ lowly appropriate by their
crowd-workers.

We then varied the gender of the assistant
giving that response, using two male and two
female British-English synthetic voices from

1Due to the analytic procedure, an a priori power analysis
was not possible, as simulation-based sample size calculations
for mixed models require previous data, which were not yet
available. Therefore, a convenience sample of 80 participants
was recruited of which 3 participants were excluded due to
failed attention checks. The analyzed sample is a sub-set of
a larger data set.

Microsoft Word’s [21] Text-to-Speech feature.
Each participant listened to eight prompts,
presented in pairs of two. The presentation of
prompts and voices was counterbalanced.
Participants were asked to rate the social
appropriateness on a user defined scale, in
comparison to a reference answer labeled with an
appropriateness score of 100. This methodology is
also known as ‘magnitude estimation’ and was
found to produce more reliable user ratings than
commonly used Likert scales [9, 22].

3 Results

We calculated Cronbach’s alpha for the response
categories ’polite refusal’ and ’flirtation’.
Cronbach’s alpha was .56 for ’polite refusal’ and
.51 for ’flirtation’. The appropriateness ratings were
normalized on a scale of 0-1 to make the results
comparable to [9]. Pearson’s correlations were
calculated between all study measures and can be
seen in Table 1.

Table 1: Means, Standard deviations and
correlations of all study measures.

Variable M SD 1 2 3

1. Perceived 0.34 0.22
appropriateness
2. Response 1.50 0.50 -.05
category
3. Assistant’s 1.50 0.50 .04 .25**
gender
4. Participant’s 1.57 0.50 -.03 .00 .00
gender

To calculate the interactions, we ran a linear
mixed effects model with perceived appropriateness
as the dependent (continuous) variable and fixed
effects for the factors of gender (sum-to-zero coded,
male coded as -1, female as 1), response category
(sum-to-zero coded, ’flirtation’ coded as -1, ’polite
refusal’ as 1), and participant’s gender (sum-to-zero
coded, male coded as -1, female as 1). We followed
the advice by [23] to use a maximal random-effects
structure. Therefore, the repeated measures nature
of the data was modeled by including a
per-participant random intercept and a random
slope for gender, response category, and their
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Figure 1: Pirate plot of appropriateness ratings in
dependency of voice assistant’s gender and response
category. The plot shows the raw data points,
distributions, means (indicated through the solid
lines), and 95% intervals (indicated through the
boxes).

interaction. Additionally, all possible random
correlation terms of the random effects were
included.

The model showed no significant effect of voice
assistant’s gender (Estimate = -0.017, SD = 0.009,
F(1, 73.833) = 3.948, p = .051), response category
(Estimate = -0.011, SD = 0.009, F(1, 74.126) =
1.229, p = .271), nor participant’s gender (Estimate
= -0.009, SD = 0.014, F(1, 74.668) = 0.418, p =
.520). However, there was a significant two-way
interaction between voice assistant’s gender and
response category (Estimate = -0.018, SD = 0.009,
F(1, 73.671) = 4.169, p = .045), indicating a
significant effect of response category for male
voice assistants, but not for female voice assistants,
see Figure 1. For male voice assistants, the
perceived appropriateness changed according to the
previously found appropriateness level of the
response categories. Hence, polite refusal responses
were perceived as highly appropriate while
flirtatious responses were perceived as lowly
appropriate. Surprisingly, for female voice
assistants this pattern did not occur.

4 Discussion

We present the first study on how the perceived
appropriateness of a voice assistant’s response to
sexual harassment changes with the interlocutor’s
gender. Our results provide first evidence that the

perceived appropriateness of voice assistants’
responses to sexual harassment differs between
male and female voice assistants. This effect may
originate from conflicting gender role beliefs and
gender expectations regarding female responses to
sexual harassment. Females in our society face
unrealistic standards and expectations [24, 25].
These standards might have resulted in neither
response being perceived as appropriate, as
potentially neither refusal nor flirtation were
stereotypically considered appropriate response
strategies for female voice assistants that face
harassment. Further research is needed in order to
understand why for female voice assistants the
content of a response did not seem to affect the
perceived appropriateness.

Ultimately, our results indicate that the gender
of a voice assistant needs to be considered when
developing future response strategies to sexual
harassment. Response strategies might need to be
adjusted to the voice assistants’ gender, in order to
develop appropriate, assertive, and discouraging
responses towards harassment.

4.1 Limitations

Limitations of the study include that the used voices
were less natural than voices used by commercial
voice assistants. Second, due to our analytic
procedure no a priori power analysis was possible,
which might have resulted in an under-powered
study. Third, the extent to which the used voices
were perceived as stereotypical female or male
could have biased the ratings and should be
assessed in future studies. Note that ‘gender-less’
voices are in general not considered to be a possible
solution [3, 26]. Fourth, participants were not asked
for prior exposure to voice assistants, which might
have been a confounding factor. Lastly, the
magnitude estimation might have introduced a bias
to participants, as the labeling of reference answers
with a score of 100 might have evoked the
impression of 100 being the highest appropriateness
score. This is reflected through the raw data, as
ratings below 100 were given more often than
above 100. This is potentially problematic, as the
reference answers belonged to a medium
appropriately response category [9] and were
expected to be perceived as less appropriate as
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responses of the ’polite refusal’ category.

4.2 Future directions

Previous research [9] found participants’ age and
the severeness of abuse to affect appropriateness
ratings. These variables should therefore be
included in follow-up studies. Additionally,
following the recommendation of [9], it would be
interesting to assess the perceived appropriateness
of responses to sexual harassment in live
interactions with voice assistants rather than using
recordings, since actively being involved in the
conversation could potentially change the
perception. However, [27] made a first step into this
direction asking the subjects to ‘act’ abuse. While
this is not only problematic from an ethical point of
view (participants did report to feel uncomfortable),
it also means that the motivation for abuse was not
genuine with a snowball effect on response ratings.
In a recent study, [28] report an evaluation with real
users from the annual Amazon Alexa Challenge.
However, their study does not report on abuse
detection accuracy and thus it is hard to know
whether users have indeed been abusive. Related
research shows that standard methods such as
blacklisting words and using off-the-shelf tools
(trained on out-of-domain data) show poor results
on this task [29, 30].

5 Summary

To conclude, our study is the first study to present
evidence that the manipulation of a voice assistant’s
gender was associated with changes in the
perceived appropriateness of responses to sexual
harassment. Further research is needed to
understand why, specifically for female voice
assistants, the perceived appropriateness of
responses differed from our expectations.
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“Rankme: Reliable human ratings for
natural language generation,” arXiv preprint
arXiv:1803.05928, no. 21, 2018.

[23] D. J. Barr, R. Levy, C. Scheepers, and
H. J. Tily, “Random effects structure for
confirmatory hypothesis testing: Keep it
maximal,” Journal of memory and language,
vol. 68, no. 3, pp. 255–278, 2013.

[24] S. Sarkar, “Media and women image: A
feminist discourse,” Journal of Media and
Communication Studies, vol. 6, no. 3, pp. 48–
58, 2014.

[25] E. Camussi and C. Leccardi, “Stereotypes of
working women: the power of expectations,”
Social science information, vol. 44, no. 1, pp.
113–140, 2005.

[26] S. J. Sutton, “Gender ambiguous, not
genderless: Designing gender in voice
user interfaces (vuis) with sensitivity,” in
Proceedings of the 2nd Conference on
Conversational User Interfaces, ser. CUI
’20. New York, NY, USA: Association
for Computing Machinery, 2020. [Online].
Available: https://doi.org/10.1145/3405755.34
06123

[27] H. Chin and M. Y. Yi, “Should an agent
be ignoring it? a study of verbal abuse
types and conversational agents’ response
styles,” in Extended Abstracts of the 2019 CHI

© 2022 The Authors. This is an open access article under the CC BY license. DOI: 10.6094/UNIFR/223817 27



LUCA M. LEISTEN, VERENA RIESER SPOHUMA21

Conference on Human Factors in Computing
Systems, no. 23, 2019, pp. 1–6.

[28] H. Li, D. Soylu, and C. Manning, “Large-scale
quantitative evaluation of dialogue agents’
response strategies against offensive users,” in
Proceedings of the 22nd Annual Meeting of
the Special Interest Group on Discourse and
Dialogue, no. 23. Singapore and Online:
Association for Computational Linguistics,
July 2021, pp. 556–561. [Online]. Available:
https://aclanthology.org/2021.sigdial-1.58

[29] A. Cercas Curry, G. Abercrombie, and
V. Rieser, “ConvAbuse: Data, analysis,
and benchmarks for nuanced detection in
conversational AI,” in Proceedings of the
2021 Conference on Empirical Methods in
Natural Language Processing. Online and
Punta Cana, Dominican Republic: Association
for Computational Linguistics, Nov. 2021,
pp. 7388–7403. [Online]. Available: https:
//aclanthology.org/2021.emnlp-main.587

[30] E. Dinan, G. Abercrombie, A. S. Bergman,
S. Spruit, D. Hovy, Y.-L. Boureau, and
V. Rieser, “Anticipating safety issues in e2e
conversational ai: Framework and tooling,”
2021.

© 2022 The Authors. This is an open access article under the CC BY license. DOI: 10.6094/UNIFR/223817 28



Designing Speech with Computational Linguistics for a Virtual Medical
Assistant Using Situational Leadership

Aryana Collins Jackson1, Elisabetta Bevacqua1, Pierre De Loor1, Ronan Querrec1

1ENIB, Lab-STICC UMR 6285 CNRS, 29200, Brest, France
jackson@enib.fr

Abstract

In emergency medical procedures, positive and
trusting interaction between followers and leaders
are imperative. That relationship is even more im-
portant when a virtual agent assumes the leader role
and a human assumes the follower role. In order
to manage the human-computer interaction, situa-
tional leadership is employed to match the human
to an appropriate leadership style embodied by the
agent. This paper explores how different leadership
styles can be conveyed by a virtual agent through an
analysis of utterances made by doctors and coordi-
nators during emergency simulations. We create a
corpus which comprises utterances from simulation
videos of medical emergencies. Each utterance is
annotated with a leadership style. After analysing
the agreement among annotators and performing k-
means clustering and latent Dirichlet allocation, we
compile easily-reproducible rules that dictate how
speech should appear in each leadership style for use
in a virtual agent system.

1 Introduction

During an unexpected medical emergency on a re-
mote site without medical experts nearby, the indi-
viduals present must assume the roles of caregivers.
Regardless of whether these amateur caregivers have
medical experience, a leader is necessary to ensure
the procedure is adhered to [1]. We propose a virtual
medical assistant agent to guide the caregivers dur-
ing an emergency in an isolated, remote site. This
virtual agent will be fully equipped with knowledge
of the humans’ capabilities and the medical proce-
dure’s tasks and resources.

While the medical procedure is the priority, also
of great importance is how the agent interacts with
the caregivers in order to create a positive working
relationship [1]. To accomplish this goal, we employ

situational leadership, enabling the agent to commu-
nicate with and guide the caregivers by matching
them with an appropriate leadership style [2].

Situational leadership describes four leadership
styles composed of high or low levels of task (direc-
tion regarding the task) and relationship (socioemo-
tional support) behavior [2]:

1. Directing: high task and low relationship;

2. Coaching: high task and high relationship;

3. Supporting: low task and high relationship;

4. Delegating: low task low relationship.

Despite various studies on the performance of
situational leadership [3], no prior work has been
completed to discover how leadership style might
change vocabulary and syntax, which is what we
explore in this paper. Therefore our work provides
novel contributions to the fields of human behavior,
healthcare, and intelligent virtual agents.

Our SAIBA-compliant agent framework in-
volves text-to-speech, without an emphasis on into-
nation [4], so leadership style must be determined
from text only. We compiled medical leader (coor-
dinator or surgeon) speech into a corpus which were
then annotated with leadership style by four people.
This annotated corpus was then analysed in order to
generate rules regarding agent speech in each of the
four leadership styles.

In this paper, we briefly discuss the state of the
art, we explain how we built our corpus, and we ex-
plain our methods of analysis and results.

2 State of the Art

This work encompasses three main domains: vir-
tual healthcare agents, leadership, and linguistics.
Healthcare agents have been used previously for
training and coaching [5], questionnaires and diag-
nostics [6], and patient monitoring [7]. In these
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systems, agents accept spoken input from patients,
rather than caregivers, and there are clear and fixed
steps in a system in which two-way conversation is
encouraged between the agent and the patient. A
comprehensive review of ECAs in healthcare is also
available from 2018 [8].

A huge amount of research involving ECAs
as leaders investigates agents as tutors or teachers,
where an agent assumes a role of authority and aims
to lead a human through a series of steps [9, 10].
Sometimes, embodied tutors take into account the
prior knowledge of the user as well as the actions
taken by the user throughout the learning experience
[9]. An agent’s personalized content and conversa-
tions have been found to improve user engagement,
improve the quality of speech, provide timely feed-
back during the interaction, provide adaptive train-
ing, and allow for self-reflection [10].

The final component of this research involves
linguistics founded in Speech Act Theory (SAT).
SAT is a theory of linguistics that explores how
words work together to form utterances that perform
actions and is based on communicative or speaker’s
intention and form [11]. While intention and form
are not directly correlated, they are related [12].
For example, certain moods (e.g., imperatives, in-
terrogatives, and indicatives) which can explain a
speaker’s attitude, go hand-in-hand with certain sen-
tence structures. Other work has explored how atti-
tudes manifest in written communication [13].

3 Compiling the Corpus

The corpus contains coordinating nurse or doctor
speech from various emergency room simulation
videos and some previous literature. The speech was
split by complete utterance (294 total), separated by
change of speaker and change of situation state (e.g.,
before a patient receives an IV and after). These ut-
terances were then separated by segment (375 to-
tal) designated by a single subject-verb pair [14].
Each utterance, sentence, and segment (referred to
as strings from now on) was labeled with its gram-
matical mood (situational syntactic expression; our
corpus contains the imperative, interrogative, and in-
dicative moods), whether the string was direct or in-
direct (whether its literal meaning differed from its
implied meaning) [11], and its speech acts [15].

Four annotators were chosen: one woman and

three men, ages 21-29, all native English speakers
from the US and Ireland, and each with a minimum
education level of some college. None had medical
experience, ensuring that the results of our analysis
are applicable to novice caregivers.

The annotators were given the following infor-
mation: (i) the definitions of task and relationship
behavior, (ii) the definitions of each leadership style
as explained in the introduction, and (iii) a list of
the original descriptors for each leadership style [2].
Annotators were asked to assign a leadership style to
each string in the corpus. The order of strings was
randomized for each annotator to ensure that it did
not have any effect.

4 Pattern Analysis

In order to find the linguistic rules that separate each
leadership style from the others, we search for pat-
terns among the annotations. Because this work is
not semantic in nature, we do not apply methods
such as word embeddings or bag-of-words models
[16, 17]. In this section, we discuss the analysis
methods we used and the results.

4.1 Agreement Analysis

The Fleiss kappa statistic representing the agree-
ment among annotators on the entire corpus was
0.415 (p-value<0.05), indicating moderate agree-
ment (127 strings total were agreed-upon) [18].
Before understanding what string elements led to
agreement, we grouped the annotations by low and
high task behavior (directing and coaching together
and supporting and delegating together). The Fleiss
kappa value then jumped to 0.570 (p-value < 0.05).
When grouped by low and high relationship behav-
ior (directing and delegating together and coach-
ing and supporting together), the kappa dropped to
0.362 (p-value < 0.05). These results indicate that
annotators agree more on indicators of task behav-
ior than those of relationship behavior and imply
that indicators of relationship behavior may be more
unique to individual followers.

We analyzed several speech characteristics to
understand what elements lead to a consensus of
leadership style. Using context from the situations
in which speech occurs, we determined whether the
string was direct or indirect; an indirect string may
have literal and implied meanings that differ while
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Table 1: The Fleiss kappa values of strings that only included one mood each, for a total of 328 strings (73
imperatives, 44 without let; 76 interrogatives; 178 indicatives). The overall kappa value is 0.404.

Imperatives Interrogatives Indicatives
all with “let” without “let”

Directing 0.187* 0.000 0.274* -0.008 0.264*
Coaching 0.217* -0.008 0.326* 0.126* 0.374*

Supporting -0.043 -0.036 0.256* 0.075 0.310*
Delegating 0.111 0.094 0.010 0.097 0.547*

*p-value < 0.05

direct strings’ literal and implied meanings are the
same. [11]. The Fleiss kappa for direct strings was
0.377, and the kappa for indirect strings was 0.193.
When separated by assigned leadership style, the an-
notators had far more agreement when it came to
direct strings except for when coaching leadership
was assigned (kappa = 0.265, p-value < 0.05). This
is likely due to the strings that use the interrogative
mood yet aim to direct the follower to do something.
In cases such as these, the form does not match the
intention, and so they are indirect.

We also analysed the agreement in terms of
mood (see the Fleiss statistics in Table 1). The anno-
tation results indicate that an imperative containing
“let” is often interpreted differently in English than
imperatives with other verbs (e.g., “Let’s go home”
vs “Go home”; the first implies that the speaker is in-
volved whereas the second does not imply involve-
ment by the speaker [11]). Imperatives with “let”
are more ambiguous than those without, as shown
by the kappa value, implying that leadership speech
should generally avoid imperatives using “let”.

Generally, interrogative strings were not agreed
upon. The strings that annotators most agreed upon
were indicatives that were ultimately labeled as con-
taining delegating leadership.

As shown in Table 2, not all kappa values are
significant, and some are likely low because the
speech acts are not distributed evenly throughout the
corpus. Speech acts offer, support, request informa-
tion, and respond do not show up often within the
corpus, which indicates that they would not often
present themselves during a medical procedure, al-
though there is a possibility that this is due to the
size of the corpus. Regardless, it is clear that cer-
tain speech acts belong in certain leadership styles
by examining the agreement statistics.

4.2 Agreement Between Individuals

We then explored whether there were any patterns
in how annotators rated leadership style in terms of
age/work experience and gender. The Fleiss kappa
statistic for just the male annotators was 0.433 (p-val
< 0.001), which is not much higher than the over-
all kappa statistic of 0.415. The kappa for the three
annotators aged 27-29 with significant work experi-
ence was 0.387 (p-val < 0.001), indicating that gen-
der and age/work experience had no effect on per-
ceptions of leadership style.

When the annotators’ ratings were grouped by
task behavior, the agreement among men was 0.536
(p-value < 0.001), and when grouped by relation-
ship behavior, the kappa was 0.397 (p-value <
0.001) - higher than the overall kappa when rat-
ings were grouped by relationship behavior. This
might suggest that indicators of relationship behav-
ior could change depending on gender. However,
the agreement is still rather low, which again points
to relationship behavior being very individual.

When the responses from the older annotators
with more work experience were grouped by task
behavior, the kappa is 0.56 (p-value < 0.001). When
grouped by relationship behavior, the kappa is 0.312
(p-value < 0.001).

More research is needed to understand how in-
dividuals perceive relationship behavior and how
varying levels of task and relationship behavior in-
fluence a follower’s performance during a task.

While we gathered some valuable insights from
examining the annotated corpus statistically, we per-
formed clustering to discover further patterns be-
tween each leadership style.
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Table 2: The Fleiss kappa values of strings containing each speech act. Totals refers to the number of strings
labeled with that speech act.

Instruct Inform Offer Request information Respond Support

Directing 0.427* 0.294* -0.081 -0.031
Coaching 0.531* 0.396* -0.500 -0.207* 0.593*

Supporting -0.016 0.099* -0.500 -0.088 -0.204 0.455*
Delegating 0.180* 0.555* -0.029 -2.04 -0.138

Totals 168 138 1 42 15 11

*p-value < 0.05

4.3 Clustering

The corpus is first limited to only the strings that
were agreed upon by all four annotators in terms
of leadership style, leaving 127 strings. Each
string was part-of-speech (POS) tagged with Stan-
ford CoreNLP. The POS-tagged strings with the
words removed as well as the strings without POS-
tags are clustered separately using k-means [17].
The similarity measure used here is cosine similarity
which determines the cosine between two vectors.
The process involves (i) identifying common se-
quences of words within a group and (ii) represent-
ing each string by a numeric vector composed of 0s
and 1s based on the presence of each of those com-
mon words or phrases in that particular string [16].
This method is similar to a bag-of-words model in
that word order does not matter.

The goal is to identify patterns among the
agreed-upon strings and then check whether those
patterns are indicative of one leadership style. The
sum of squared differences (SSD) is used to deter-
mine the number of optimal clusters. The strings are
then clustered with k-means into the optimal num-
ber of clusters based on the presence of common se-
quences within each string as explained above. The
leadership style present in each cluster and the com-
mon sequence(s) that define each cluster then define
the linguistic rules for each leadership style.

Common sequences were found by defining the
length of the sequence and the number of times
that sequence needed to exist among the agreed-
upon strings. Clustering with k-means was per-
formed (see Figure 1), and the resulting clusters that
contained a single (or nearly a single) leadership
style were examined. The common sequences that
formed the clusters and were found to be present
in only one leadership style are listed in Table 3).

Figure 1: The SSD at optimal k when the raw strings
and POS tags only from agreed-upon strings are
clustered. The legend gives the number of words or
POS terms that form the sequence and the number of
times that sequence had to be in the 127 agreed-upon
strings for it to be considered a common sequence.

Sometimes, a POS sequence corresponded to a sin-
gle sequence of raw words; in these cases, the words
themselves are in the table instead of the POS tags.

4.4 Analysis of Individual Annotations

Analyzing the agreed-upon strings is useful for find-
ing characteristics of speech that might be uni-
versally recognized, but we also must account for
differences between the annotators. Using latent
Dirichlet allocation (LDA), we explore each annota-
tor’s assignment of leadership style [19]. Sequences
of raw words did not yield meaningful results, so se-
quences of three POS tags were used to find impor-
tant and distinct groups. An initial assessment using
LDA on the agreed-upon strings resulted in many of
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Table 3: A list of rules generated by clustering on the agreed-upon strings’ POS tags. When a sequence of POS
tags tended to be a set of specific words, only the specific words were included.

Directing Coaching Supporting Delegating
Directness Direct Direct, Indirect Direct Direct

Mood Imperatives without
“let”, Indicatives

Interrogatives, Indicatives Indicatives Indicatives

Speech acts instruct instruct, inform, support support inform

Keywords “We need to, “I
want you to”,
“Carry on with”

“please”, “Okay, can someone”,
“for me, please”, “as well, please”,
“Please, can we”, “Can you please”,
“You can”

“Okay, thank
you”

“I see that”, “It
looks like”

POS tags MD PRP VB, PRP MD VB VBZ IN PRP$

the same sequences that were produced by cluster-
ing. Only some of our results are discussed here.

The first annotator that we examine is female,
age 26, with significant work experience. The most
represented POS sequence for strings labeled with
directing and coaching leadership was VB DT NN
(e.g., “check the pulse”). Strings containing the for-
mer were labeled with high-task behavior (directing
or coaching) by all annotators, indicating agreement
on task behavior when that sequence is used.

Annotator 1 assigned directing leadership to se-
quence VB JJ PRP (e.g., “make sure you”). Strings
containing the former were also labeled with high-
task leadership (directing or coaching) by all anno-
tators except for the male annotator aged 21 with
less work experience, who labeled them as having
delegating leadership.

She assigned coaching to strings with the se-
quence VB PRP VB, which entirely corresponded
to “let’s” + verb. Other annotators assigned these
strings styles 1-3, which confirms the lack of agree-
ment when “let” is used. If we were tailoring our
virtual agent’s speech to this annotator in particular,
we would use the word “let” to begin utterances with
high task and high relationship behavior.

The male annotator aged 21 with limited work
experience seemed to assign leadership style that
did not match the assignments by the other annota-
tors the most. The most representative sequence of
strings he assigned with supporting leadership was
PRP VBP DT (e.g., “we have a”, “I am a”). The
other annotators assigned these strings leadership
styles 1-4. This annotator clearly identifies an intro-
ductory statement as well as the use of “we” as being
an indicator of high relationship behavior, which is

not true for the other annotators.
Findings such as these demonstrate how even

further personalization of the agent’s communica-
tion might be necessary to correspond to an individ-
ual’s definition of task and relationship behavior.

5 Conclusions

Using our annotated corpus of medical leader
speech, we have identified linguistic rules for each
leadership style. These rules determine what kinds
of utterances a leader should make depending on the
appropriate leadership style. This work is intended
to be used in a dialogue manager for a virtual med-
ical assistant who guides human caregivers during a
medical procedure. The agent must communicate in
a manner appropriate to the caregiver. By designing
the agent’s speech according situational leadership
rules, we believe that the agent is able to establish a
positive working interaction with the caregivers.
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Abstract

Low-intensity psychological interventions, such as
Cognitive Analytic Guided Self-help or Cognitive
Behavioural Guided Self-help, depend on the
patient engaging with a manualised approach to the
treatment of their mental health problem. Through-
out the process, the Psychological Wellbeing
Practitioner (PWP) will be observing the patient’s
engagement and communicative behaviours espe-
cially concerning their progress. These behaviours
are closely related to the patient’s emotional state,
and more competent PWPs use their attentive
listening skills to be alert and responsive to the
signs of emotions, and to pick up on any treat-
ment and implementation issues live during the
session. However, this can be challenging to do and
speech-based automatic analysis could be a way
to aid the PWP by providing conversation-based
higher-level, complex analysis. This study is a
step towards such automatic session analysis and
explores the automatic prediction of the PWP’s and
patient’s emotions using real self-help session audio
recordings. A system for continuously predicting
emotions using a dimensional approach was ex-
plored along with different classifiers and acoustic
feature extraction approaches. Qualitative analysis
of the emotion dimensional value tracks throughout
sessions revealed different patterns depending on
PWP competency and session timing (early or late
in the treatment process).

1 Introduction

Low intensity psychological interventions, such
as Cognitive Behavioural Guided self-help (CBT-

GSH) involve focusing on healthy and unhealthy
thought patterns. Other interventions such as
Cognitive Analytic Guided Self-help (CAT-GSH)
involve thinking about reciprocal roles and their
impact on our relationships. In both cases, the role
of emotions is important: the patient’s emotions are
considered a dynamic factor that could establish a
positive therapeutic alliance in the sessions. This
involves agreeing on tasks, treatment goals, as well
as establishing a genuine human relationship. The
PWP can acknowledge and motivate the patient’s
positive feelings through talking therapy. Fur-
thermore, the PWP should be empathetic with the
patient’s emotions and evaluate any flawed thinking
that has impacted the patient’s mood [1]. Assessing
the competence includes evaluating the PWP’s use,
knowledge, and implementation of the treatment
[2]. Predicting patient emotion automatically using
specific dimensions could help capture the small
variations in emotions which could help the PWP
determine the appropriate treatment plan.

The common techniques used in Speech
Emotion Recognition (SER) are the discrete and
dimensional models. Discrete emotion theory
defines six categories of basic emotions: sadness,
happiness, fear, disgust, anger, and surprise [3].
The dimensional emotional model uses several
controlled dimensions to represent emotions in
a continuous manner such as arousal, valence,
control, and power [4]. These dimensions are
categorical and universal aspects of emotion. One
of the most adopted dimensional models in SER
is a two-dimensional model consisting of arousal
versus valence. The arousal dimension describes
the strength of the felt emotion. It may range

© 2022 The Authors. This is an open access article under the CC BY license. DOI: 10.6094/UNIFR/223820 35

FRIAS JUNIOR RESEARCHER CONFERENCE

HUMAN PERSPECTIVES ON SPOKEN HUMAN-MACHINE INTERACTION

NOVEMBER 15–17, 2021



DALIA ATTAS, STEPHEN KELLETT, CHRIS BLACKMORE, HEIDI CHRISTENSEN SPOHUMA21

from excited to apathetic. The valence dimension
illustrates whether an emotion is positive such as
happy and calm or negative such as anger and
depressed [5].

In this study we have explored automatic meth-
ods of continuously predicting labels of emotions
for arousal and valence in guided self-help sessions.
The guided self-help sessions dataset used is not
labelled with emotional labels and hence the system
is trained on a benchmark database and then this
model is used to predict emotions in the guided
self-help sessions dataset. Considering that the
emotions in those session recordings are natural, it
is essential to preserve that in the data to match the
study scope. For that reason, the chosen benchmark
database for training is a natural speech emotion
database called Remote Collaborative and Affective
Interactions (RECOLA) [6].

2 Guided Self-help Sessions Dataset

The recordings of the sessions used in this study
were collected for a study aimed at comparing
efficiency and clinical durability of anxiety disor-
ders manualised treatments, the Cognitive Analytic
Guided Self-help (CAT-GSH) and Cognitive Be-
havioural Guided Self-help (CBT-GSH) [7]. In
total, 54 session recordings has been included in
this study, where each includes a conversation
between a PWP and a patient as part of their
therapy treatment. The PWPs deliver low-intensity
interventions for mild to moderate anxiety. They
guide the patients through treatment in contrast to
traditional therapists [8]. The sessions vary in length
between 30 and 40 minutes totalling 27 hours and
14 minutes. Some sessions were conducted over
the mobile phone due to the Covid-19 pandemic.
The 54 sessions are split into 20 mobile phone
sessions and 34 face-to-face sessions. Table 1
describes the full dataset. Each session is labelled
with patient depression and anxiety outcome scores.
Those scores could assist in determining the patient
emotional state as patients with a high level of
anxiety or depression are expected to reveal more
negative emotions [9]. Also, each session has
a PWP’s competence rating score. The PWP’s
ability to understand, manage, and handle the
patient’s emotions is closely related to the PWP
competence ratings [10]. Furthermore, each session

had time-stamped speaker turn labels allowing for
speaker-specific analysis of the acoustic features.

Table 1: Patient demographics and dataset info

Patient demographics Total Average Min Max

Number of patients 54 - - -
Female 39 % - - -
Age - 39 16 74
In-person sessions 34 % - - -

The benchmark database used in the study was
designed in a collaboration by a team in informatics
and psychology at the Université de Fribourg,
Switzerland [6]. The RECOLA database was
recorded to study the socio-affective behaviours
from multimodel data. The spontaneous and
naturalistic interactions were recorded during the
resolution of a collaborative task performed in
dyads and remotely through video conference. The
recordings have emotionally annotated time con-
tinuously for the dimensions (arousal and valence)
using six annotators for every 0.4 seconds.

3 Dimensional Emotion Recognition
Baseline

The Audio-Visual Emotion recognition Challenge
(AVEC) is one of the well-known in the field of
continuous emotion recognition. One of the AVEC
2018 sub-challenges related to emotion recognition
is the Gold-standard Emotion Sub-challenge (GES)
that focus on generating dimensional emotion labels
by fusing continuous annotations of dimensional
emotions rated by several annotators [11]. Then,
the fused annotation is used in the challenge to train
and evaluate a baseline emotion recognition system
using the RECOLA dataset. The emotion labels are
by nature highly variable and subjective [12] and
the GES challenge followed the dominant approach
in the literature referred to as gold standard that
is to combine the annotations for each recording
across time using the Evaluator Weighted Estimator
(EWE) based approach [13].

The GES uses different supervision levels in
feature extraction: at the supervised level, features
depend directly on the expert’s knowledge-based
representations. The emotions are continuously
recognised and then summarised using low-level
descriptor (LLDs) features with a set of functionals
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computed over a fixed duration sliding window.
The LLDs usually contains spectral, cepstral,
prosodic, and voice quality features. The Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS)
was used as the baseline feature set. It comprises 88
features covering the formerly mentioned acoustic
features. In addition, 13 Mel-frequency cepstral
coefficients (MFCCs), and their deltas and delta
deltas were computed using a set of acoustic LLDs.
The features were extracted using the openSMILE
toolkit [14]. The semi-supervised level used the
technique of Bag of Audio Words (BoAW) which
represents the distribution of LLDs based on a
dictionary learned from them [15]. The MFCCs
were used in BoAW as a front end to compute the
acoustic features. The BoAW was extracted using
the open-source toolkit openXBOW [16].

Several dimensional regressors were used in the
challenge such as Support Vector Machines (SVM)
from the liblinear toolkit [17], and Generalised
Linear Models (GLMs) such as Ridge regression,
Elastic Net, Lasso from the scikit-learn toolbox
[18]. Furthermore, multi-task formulation of the
Elastic Net and Lasso algorithms have been imple-
mented to make use of the correlations between the
dimensions. The challenge achieves the best results
using the BoAW in recognising the dimensional
emotions under the audio modality. The valence
dimension results are quite challenging comparable
with the arousal which is commonly agreed in the
literature [11].

4 Experimental setup

The AVEC 2018 challenge was used as a baseline for
the study for the dimensional emotion recognition
system. The GES Sub-challenge was selected due
to their compatibility with the experiment require-
ments and the availability of the gold standard as la-
bels for the emotions assuring the efficiency of the
emotional labels. As an initial phase, the baseline
was implemented using the same baseline training
and development sets to train the system for further
experiments. The features selected to be used for
the guided self-help sessions dataset are eGeMAPS
and BoAW because BoAW features gained the best
correlation coefficients in the baseline for the audio
modality [11]. The eGeMAPS used at the beginning
to build and train the SER system using the guided

self-help sessions dataset. The eGeMAPS function-
als computed are the arithmetic mean and the co-
efficient of variation on all 42 LLDs. Furthermore,
the functionals applied to the pitch and loudness fea-
tures were: percentiles 20, 50 and 80, the range of
percentiles 20 to 80, and the mean and standard devi-
ation of the slope of rising/falling signal parts. The
functionals related to pitch, jitter, shimmer and all
formant related LLDs were only calculated for the
voiced regions. In addition, some temporal features
were calculated, such as the rate of loudness peaks
per second, average length and standard deviation of
continuous voiced and unvoiced segments, and the
rate of voiced segments per second.

The BoAW are audio representations formed by
bagging acoustic LLDs such that each frame-level
LLD vector is allocated to an audio word from a
codebook retained from the training data [19]. A
fixed-length histogram representation of an audio
recording is generated by counting the number of
assignments for each audio word. The extracted
features from the training set are then concatenated
and normalised for the classification phase. The
classifiers used in the recognition system are SVM
and Generalised Linear Models (ridge regression,
lasso, multi-task lasso, elastic net, and multi-task
elastic net).

5 Results

The study explored two main objectives: the effect
of using several feature sets in the SER system on
the prediction of the arousal and valence dimensions
from a quantitative perspective, including changes
in the patient only segments or the whole sessions
(PWP and patient). The other objective is to conduct
a qualitative study to understand the subtle changes
in the patient’s emotions and emotions within the in-
teraction between the patient and the PWP during
several periods in the therapy treatment.

To explore the differences between the results
gained using the eGeMAPS and the BoAW features,
the averaged predictions of the dimensions arousal
and valence were plotted for the patient only
speaking turns as shown in Figure 1 and 2. Figure 3
and 4 presents the same latter measures for the full
sessions. The Figures show that predictions of both
features in the arousal dimension are close to each
other, while the BoAW gained more reasonable
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results than the eGeMAPS in the valence dimension.
The results gained confirms the baseline results
such that the valence is a bit challenging to predict,
comparable with the arousal. Furthermore, the
BoAW enhances the valence predictions, while both
features predictions are approximately analogous to
each other in the arousal.

Figure 1: Arousal prediction for patient turns

Figure 2: Valence predictions for patient turns

Figure 3: Arousal predictions across a full session

The predicted arousal and valence values as
well as the interactional patters were qualitatively
analysed across the sessions and several observa-
tions made. There were more patient speaking

Figure 4: Valence predictions across a full session

turns during the sessions recorded at the start of
their guided self-help plan comparable to the later
sessions in therapy. This was especially true in
sessions with high PWP competence ratings. This
is likely because the patient in those earlier sessions
are invited to spend time describing their issues
and how these affects their normal life. In the
later sessions, there are more PWP speaking turns,
which could relate to the PWP trying to resolve the
patient’s problems and assist them in dealing with
those mental difficulties. In the high competence
rating sessions, the PWP tries to sync the patient’s
emotions and shows various emotions as a sign of
approval and empathy toward the patient. The low
competence rating sessions show that the PWP does
not reveal a variation in emotions or show natural
emotions along with the session.

6 Conclusions

In this study, we investigated the efficacy of predict-
ing continuous emotional labels on guided self-help
sessions. The AVEC 2018 were used as a baseline
for building and training the SER system. Due to the
unavailability of the emotions labels in the guided
self-help dataset, the RECOLA database was used as
a benchmark database for training the system. The
trained system was tested using the guided self-help
sessions dataset. The features set used for training
the system are eGeMAPS and BoAW. Several clas-
sifiers have been used for predicting the continu-
ous emotional labels, such as SVM, Ridge regres-
sion, Elastic Net, and Lasso. The BoAW feature
results approved the baseline results by improving
the outcomes of the valence dimension. Further-
more, several remarks were reported in the quali-
tative study relating to the numbers of the speak-
ers speaking turns and PWP competence in several
stages in the therapy treatment.
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Abstract

Researchers exploring the predictive performance
of different properties of speech in medical in-
teractions often use data from different contexts
due to the scarcity of available speech data, for
example telephone, in-person, or human-computer
interactions. However, people may speak differently
across these different contexts. The objective of
this research project was to explore whether there
are differences in spoken narratives depending on
whether they occur in human-human or human-
computer interactions. We compared differences
in speech rate, word count, pause frequency, and
total pause time for patient narratives about what
happened during an experience of transient loss
of consciousness for human-human and human-
computer interactions. We found that participants
in human-human interactions spoke significantly
faster and said significantly more than participants
in human-computer interactions, but that there were
no differences in the frequency of pauses or the
total time spent pausing. These findings suggest
that there are differences in how people speak with
a human compared to a computer and that users
of medical speech technology should consider
these differences when changing methods of data
collection.

1 Introduction

Advances in speech processing technology have
allowed researchers to explore the relationship
between properties of speech and other group
characteristics. One particularly prominent area of
research involves the identification of individuals
with a health condition based upon these speech

properties, for example psychiatric disorders [1]
and Alzheimer’s disease [2]. Although previous
research aiming to identify a health condition using
speech have demonstrated promising results, these
studies are typically hindered by the scarcity of
medical speech data that is available to train models
[3]. Therefore, researchers may be limited by the
data that is available, which could lead to variability
between the context of each dataset, for example
whether the participant is communicating using a
telephone [4, 5], in person [6], or whether they are
communicating directly to a computer [7]. One
way to collect data reliably is to use speech data
from human-computer interactions, but this method
requires consideration regarding whether features
that were effective predictors of the diagnosis in
human-human interactions can maintain a high level
of performance for recordings of human-computer
interactions.

Research into human-computer interactions has
explored differences in how people speak while
interacting with a computer. It has been shown that
people speak more concisely but take considerably
longer because of long pauses associated with
turn transitions while speaking with a computer
compared to a person [8]. Research has also found
that people speak louder and [9] and have a slower
rate of speaking [10] when speaking to a computer
compared to a person. The differences in how
people speak with a computer can be influenced by
the speaking style of the computer, such as changes
in loudness and speaking rate in response to the
same changes in the computer generated speech
[11, 12]. These findings demonstrate that people
speak differently when interacting with a computer.

However, many of these studies have explored
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speech properties in human-computer interactions
where the computer is an active responder during
the interaction, but this may not be applicable for
the applications that are used in medical interviews
because the focus is on the patient to provide
information rather than the computer to respond
to the patient. Therefore, these applications do
not need to be and are not always responsive [7].
Research exploring speech differences in patient
narratives without the presence of a responsive
counterpart would increase our knowledge of how a
person’s speech may vary between human-human
and human-computer interactions without the inter-
ference of communication problems or differences
that are caused by the computer processing the
speech input and responding. Furthermore, this
would increase our knowledge of human-computer
interaction differences that are present in narratives,
which are a prominent part of medical encounters.

The objective of this study was to investigate
whether there are differences in a select number of
speech properties that are frequently used in speech
processing applications in the medical field [1, 2]
between narratives that are delivered to a human co-
participant or an unresponsive virtual avatar. The
features included speech rate, word count, pause-to-
word ratio, and the total amount of time that people
paused.

2 Method

2.1 Data

The data used for this analysis was taken from
two independent studies exploring differences in
how people who have experienced transient loss
of consciousness (TLOC) describe what happened.
TLOC is a term used to describe a short period of
unconsciousness that often involves amnesia for
the unconscious period, abnormal motor control,
and a loss of responsiveness [13]. The three most
common causes of TLOC are epilepsy, nonepileptic
seizures, or syncope (fainting) [14].

The first dataset consisted of people talking
about their experience of TLOC to a neurologist at
the Royal Hallamshire Hospital in Sheffield, UK
[15, 16]. There were 19 recordings from people
who had experienced epileptic (n=6) or nonepileptic
seizures (n=13). The neurologist was given strict
instructions to encourage the patient to talk about

their seizures from their own perspective; therefore,
they did not interrupt the patient and waited for the
patient to finish talking before asking a follow-up
question. Patients were asked to describe their first,
worst, and last seizure in turn. Only descriptions
of the last seizure were used in this analysis, which
were prompted by an utterance following the format
”tell me about your last attack”. There were 13
women and 6 men with a median age of 33. The
average length of the audio recordings was 79.1
seconds (SD = 48.4).

The second dataset comes from an on-going
study exploring the feasibility of predicting the
cause of TLOC using interactions with a virtual
avatar. The virtual avatar consisted of a series of
videos where an animated head asked questions
that were pre-recorded by a human. Participants
are asked to provide information about their ex-
perience of TLOC by completing a closed attack
history questionnaire and verbally describing what
happened during their most recent attack to the
virtual avatar. Participant’s responses were recorded
automatically once each video stopped playing.
This analysis focuses on the first utterance that
was “please tell me in as much detail as possible
what happened during your most recent attack that
caused you to lose consciousness”. Only responses
where participants responded with a narrative were
included in the analysis because there were some
instances where participants resisted describing
what happened in favour of making a complete
negation (e.g. “I can’t recall anything”), which is
not uncommon in seizure consultations [15, 16].
There were 23 recordings from people with a
diagnosis of epilepsy (14), nonepileptic seizures (3),
or syncope (6). 14 recordings were from women
and 9 were from men with a median age of 36. The
average length of the audio recordings was 69.4
seconds (SD = 82.5).

2.2 Analysis

All of the recordings were manually transcribed. For
the human-human interactions, a subsection was ex-
tracted from the whole recording that started im-
mediately after the neurologist requested a descrip-
tion of the last seizure and ended when the neurol-
ogist started speaking again. A pause was defined
as a silent period for more than 30 milliseconds, and
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the duration of each pause was manually calculated
using Praat (version 6.1.34, 1992-2020, produced
by Paul Boersma and David Weenink). The clo-
sure pauses of plosives were not recorded as pauses.
Pauses immediately after the neurologist’s turn or
at the end of the narrative could be caused by dif-
ferent reasons depending on the group, for exam-
ple unfamiliarity with the application or the reluc-
tance of the neurologist to speak too soon to ensure
the patient had finished their description ; therefore,
these pauses were removed from the analysis. The
remaining audio file, transcript, and recorded pauses
were used to calculate the following features:

• Speech rate - the number of words spoken per
minute

• Word count - the total number of words spo-
ken during the narrative

• Percentage of time spent pausing - The total
pause time divided by the overall audio length
and multiplied by 100

• Pause-to-word ratio - The absolute number
of pauses divided by the total number of
words and multiplied by 100. Pause-to-word
ratio was used instead of pause frequency
to account for variations in the size of the
narrative.

The normality of each measurement was tested
using the Shapiro Wilk test, the homogeneity of vari-
ance was tested using Barlett’s test, and group differ-
ences were tested using either an independent T-Test
or Mann Whitney U test depending on the outcome
of the first two tests. The alpha value was set at 0.05.

3 Results

A group comparison of the univariate data for each
feature is displayed in Figure 1.

3.1 Speech rate

An Independent T-Test found a significant difference
in the speech rate between people speaking to an-
other person (mean=154.25. SD=40.5) compared to
people speaking to the virtual avatar (mean=125.62,
SD=38.5), t(41)=2.285, p<0.05. People speaking
with a human spoke faster than those speaking with
the virtual avatar.

Figure 1: a strip plot comparing the scores for each
measurement between people conversing with a per-
son and a computer. A) speech rate. B) total number
of words. C) percentage of time spent pausing. D)
pause-to-word ratio.

3.2 Word count

A Mann Whitney U test demonstrated a significant
difference (U=118.5, p<0.01) between the number
of words said by people speaking with a human
(median=165) compared to people speaking with
the virtual avatar (median=82). People speaking
with another human said more during their narrative
than those speaking with the virtual avatar.

3.3 Percentage of time spent pausing

An independent T-Test showed no significant
difference between the percentage of time spent
pausing for people speaking with another human
(mean=38.6, SD=14.4) compared to people speak-
ing with the virtual avatar (mean=30.02, SD=14.8),
t(41)=1.845, p=0.072). Therefore, neither group
was silent for more time during the total narrative.
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3.4 Pause-to-word ratio

A Mann Whitney U test indicated no significant
difference (U=208.5, p=0.405) between the pause-
to-word ratio for people speaking with another
human (median = 14.07) and those speaking with
the virtual avatar (median=14.37). Therefore,
neither group paused more frequently than the other
when pause frequency was standardised by the
number of words spoken.

4 Discussion

The research project explored whether there are dif-
ferences in the properties of speech during narratives
about a seizure between human-human or human-
computer interactions. We observed that there was
a significant difference in the speech rate and word
count between the two contexts: people were more
likely to say more and speak faster while conversing
with another human compared to the virtual avatar.
However, there was no difference in the frequency of
pauses or the total time spent pausing throughout the
narrative when these measures were standardised by
the amount of words spoken and the total narration
time, respectively.

These findings suggest that the presence of an-
other person may encourage more speech during a
narrative telling about what happened during a re-
cent loss of consciousness, which could have impli-
cations for medical speech technology that relies on
these properties of speech. Furthermore, the finding
that there were no differences in the frequency and
duration of pauses suggests that these measures may
remain consistent between the two contexts. Dif-
ferences in how people pause can assist the differ-
ential diagnosis between people with epilepsy and
nonepileptic seizures [17], and these findings sug-
gest that people should not pause differently when
they are being interviewed by the virtual avatar.

The finding that people speak slower while
speaking with the virtual avatar supports previous
research that has reported a slower rate of speech
during human-computer interactions [10], although
our findings demonstrate that this difference is still
present in the absence of spoken responses from
the computer. One potential reason that people
speak slower to the virtual avatar is that people
accommodate their speech because they perceive
that the computer will have difficulty understanding

them [18]. A second potential explanation is that
people were changing their speech rate to match
the speaking style of the virtual avatar, commonly
known as entrainment [19]. Given that variations in
the prosodic features of computer generated speech
can influence the users trust of the application
[20] and that robots can be more persuasive and
favourable depending on their speaking style [21],
future research should explore whether changing
the design features of the virtual avatar and how it
communicates can impact on how much information
people provide.

Although there is evidence that people say less
during interactions with a computer, people may
still convey all the relevant information for the
task. Walker et al. [22] found that people gave
qualitatively similar answers to questions while
speaking to a virtual agent when compared to
interactions with a neurologist. Therefore, although
the responses are shorter, they may still adhere to
the sequential requirements of the previous turn.

There are multiple potential reasons why people
say more while speaking with a person. Firstly,
in our data, the neurologist does not take a turn
until they are sure that the participant has finished
speaking [15, 16]. Whereas this allows the par-
ticipant to complete their narrative uninterrupted
and is similar to the virtual avatar which cannot
respond to what the participant has said, hesitating
to take a turn could be interpreted by the participant
as a sign that the neurologist is waiting for more
information. Secondly, the normative structure
of conversation may constrain participants to use
explicit closing statements to indicate that they
have finished their narrative. Closing statements
are one reason why people produced more verbose
responses in human-human interactions in previous
research [8]. The participant can move on swiftly
during interactions with the virtual avatar by press-
ing a button, which may allow them to produce a
shorter response without the requirement of this
response being accepted as complete by the other
co-participant. Thirdly, a human co-participant
can encourage another to produce more elaborate
responses using verbal encouragement, for example
“mm”, and nonverbal encouragement, for example
eye contact and nodding, whereas the virtual agent
used in our study was not programmed to respond
actively to patient responses and therefore could not
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encourage further talk.

4.1 Limitations

There are multiple limitations to this analysis.
Firstly, there are differences in the recording quality
between the two datasets because the data was
collected in different contexts and the participants
were at different distances from the recording
device, which made it difficult to make comparisons
for other paralinguistic features, for example differ-
ences in pitch or loudness. Secondly, the analysis
only used recordings of people talking about their
experience of TLOC. Although this allowed for a
direct comparison between the two groups, making
comparisons of speech recordings for other health
conditions across the two contexts would result
in more generalisable finding. Therefore, future
research should explore human-human versus
human-computer interaction differences for other
health conditions. Finally, a different sample was
used for the human-human and human-computer
interactions. There is a possibility that the group
differences are caused by individual differences be-
tween participants. Future research should explore
these group differences using a within-participant
design to investigate whether individuals change
how much they say between the two contexts.

5 Conclusions

The objective of this analysis was to compare
properties of speech between human-human and
human-computer interactions during medical in-
terviews. We observed that people speak faster
and say more during interactions with a person
compared to interactions with a computer, but there
was no difference in the frequency and duration
of pauses. These findings concur with previous
research showing that people speak differently
while interacting with a computer and demonstrate
the importance of considering how properties of
speech may change when transitioning from human
led to computer led interviews. Future research
should continue to explore how properties of speech
change between these two types of interactions for
other health conditions to allow researchers to make
inferences about how the performance of a medical
diagnostic system that relies on speech will change
if there is a transition between these two methods of

collecting the speech data.
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Abstract 

Social robots bring new possibilities to education. 

This paper presents an analysis of young learners’ 

interactions in robot-assisted language learning 

(RALL) and seeks to describe how they give each 

other advice in foreign language speaking 

situations. Especially when a problem arises due to 

insufficient languages skills, the learners engage in 

problem-solving negotiations. The data consist of 

eight video-recorded learning situations where eight 

pairs of 10 to 12 years old children interact in 

English as a foreign language (EFL) with a robot. 

This paper presents microanalyses on advice-giving 

situations where the learners help each other and 

succeed in their common task of answering the 

robot’s questions correctly. These microanalyses 

show that the learners give each other normative and 

epistemic advice. The results of the present study 

suggest that interaction problems in RALL 

situations lead to fruitful problem-solving 

interactions between the learners. 

1 Introduction 

Over the last few years, social robots have become 

increasingly common, and in this development, they 

have also been introduced as a tool for foreign 

language teaching. Although social robots have 

been largely studied, there are relatively few studies 

on robot-assisted language learning (RALL) [1], 

[2]. In this paper, we examine advice-giving 

situations in RALL as part of the research project 

RoboLang of the University of Turku [3]. 

We are interested in RALL situations where 

primary school children interact with a robot during 

English as a foreign language (EFL) classes. In 

different phases of the learning situation, the 

learners often encounter interaction problems with 

the robot, and the interaction breaks down [4]. The 

learners therefore find themselves in problem-

solving situations. In this paper, we focus on the 

advice that the learners give each other to solve 

problematic situations in the child–robot interaction 

(CRI). Repair and advice have been studied 

especially in conversation analysis [5]–[7] but have 

not yet been examined in the context of learner 

interaction in RALL.  

In this paper, our main aim is to analyse the 

ways in which the learners help each other in CRI. 

Namely, we examine what kind of advice young 

learners give one another in RALL. We will start by 

outlining the literature on social robots in language 

learning and on advice-giving. We will proceed by 

describing the data and analysis. Finally, we will go 

on to discuss the ways young learners help each 

other to succeed in RALL tasks. 

2 Background 

2.1 Social robots in language learning  

According to recent research, robots provide new 

opportunities for learning [1], [2]. Robots can have 

a positive effect on learning outcomes [1], [8]. Their 

effectiveness may emerge from their social 

behaviour, especially their multimodal interaction 

where embodiment and gestures enrich the 

interaction [1]. Robots can also have a positive 

impact on the learners’ motivation [2], [9]. Robots 

can arouse learners’ curiosity, engage them in 

realistic dialogue practice and have features that can 

support learning [8]–[10]. For example, 

repeatability is helpful for comprehension and 

pronunciation [10]. The anthropomorphism also 

encourages speakers to treat robots as real speakers 
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while proposing a situation where the learners do 

not have to worry that the robots might tire, laugh, 

or scold them [10]. These elements have been found 

to reduce foreign language anxiety, which can be a 

crucial obstacle to using the foreign language [1], 

[9], [11].  

2.2 Advice-giving in language learning 

Language learning can be perceived as a socio-

cognitive process and a social practice [12], [13]. 

Studying classroom interactions, for example, 

negotiations of meaning, repair, and advice, is 

therefore a means of understanding learning [14].  

Advice is something that “describes, 

recommends, or otherwise forwards a preferred 

course of future action” [5, p. 368]. Advice can be 

defined as having two dimensions: normative and 

epistemic [5], [7]. The normative dimension refers 

to the prescriptive aspect of advice that highlights 

the preferred course of action [5], [7]. For instance, 

a health advisor may advise a new mother with an 

imperative: No, always be very very quiet at night. 

[5, p. 387]. The epistemic dimension, on the other 

hand, refers to the knowledge asymmetry between 

the giver and the recipient of the advice, that is, the 

advisor knows more than the advisee [5], [7]. For 

example, advice may be given by sharing 

knowledge: The hospital recommend that she 

shouldn’t start solids until she’s four months. [5, 

p. 387].  

Further, advice can be divided by its initiator 

[5]. Advice may be self-initiated, that is, the person 

experiencing the problem requests advice and starts 

the situations [5]. For instance, a new mother may 

ask: Shall I let her tell me when she’s hungry? and 

receive advice: Well yes, that’s sensible. [5, p. 371]. 

Other-initiated advice is initiated by the advice 

giver, who may inquire about the need for advice, 

for example, with a question Are you doing your 

exercises? and after a problem-indicative response 

continue with an assessment I think it’s quite 

important to […] [5, p. 383]. 

To our knowledge, advice-giving in RALL has 

not been previously researched, but previous studies 

note that the robot may initiate cooperation and 

collaborative learning between the human 

participants [8], [15]. It has also been observed that 

communication breakdowns are common in RALL 

as there are two major factors contributing to them: 

the learners’ linguistic and the robot’s technical 

limitations [4]. Therefore, advice and collaboration 

are important for the success of the human–robot 

interaction. In this study, our research question is: 

“What kind of advice do young learners give each 

other in RALL?” More specifically, we set out to 

explore to what extent learners use self- and other-

initiated advice in RALL and how do the forms of 

advice vary in their normative and epistemic 

dimensions. 

3 Data and methods 

The data for this study were collected in the 

University of Turku’s research project RoboLang in 

2019. The data analysed in this study consist of 8 

learning situations – approximately 17 minutes 

each, for a total of 2 hours and 19 minutes – where 

two learners interact with the robot. The data were 

collected during EFL lessons in a Swedish-speaking 

school in Finland. Before the data collection, 

informed consent forms were obtained from the 

local school authorities and from the participants’ 

parents. The learning situations were recorded with 

two cameras and one audio recorder. There were 16 

participants, comprising 7 girls and 9 boys. They 

formed 5 same-sex and 3 opposite-sex pairs. They 

were 10–12 years old, aged 11.25 on average. 

In these learning situations, the learners met the 

humanoid robot NAO 6 (by SoftBank Robotics) for 

the first time. The learning application used on 

NAO was the Elias Robot application by Utelias 

Technologies. The application is used via a laptop 

showing images related to the speaking exercises. 

By using the laptop, the learners can also ask the 

robot to repeat a word or a sentence and move on to 

the next exercise. In the pre-programmed lessons, 

the robot proposes simple repetition tasks using 

individual words and question–response phrases to 

teach vocabulary and conversational structures. At 

the end of the learning situation, the learners have 

the possibility to discuss the lesson with the robot 

by asking general questions or questions related to 

the lesson. 

The participants take turns interacting with the 

robot. The teacher who is present in the RALL 
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situation manages the learning situation, for 

example, by mediating between the robot and the 

children and providing advice in some interaction 

breakdown situations. The space is organised so that 

the robot is in the middle of the teacher and the 

learners.  

 

 

Figure 1: Spatial organization of the RALL situations. 

The recorded videos were transcribed using a 

simplified version of the multimodal transcription 

conventions by Jefferson [16]. The conventions 

were simplified to focus on the content of the 

interaction (see section 8 Transcription 

conventions). The speakers were marked by the 

following codes: T for the teacher, R for the robot 

and C for the children. From these transcriptions we 

searched for advice sequences based on Heritage 

and Sefi’s definition [5]. After identifying the 

advice-giving situations, we effected sequence 

analysis on them. Next, we will present you the 

results of our analysis. 

4 Results 

4.1 Overview 

The analysis of the data reveals that the learners 

encounter interaction problems with the robot. 

These interaction problems often arise from the pre-

programmed structure of the RALL dialogues: 

learners need to utter the answers expected by the 

robot in order to proceed in the lesson [4]. Further, 

these problems arise due to the learners’ limited 

linguistic resources [4]. For example, problems 

emerge from pronunciation errors or forgetting the 

target word. These problems emerge either before 

or during the interaction with the robot. When these 

kinds of problems occur in human–robot interaction 

and when the learner talking with the robot does not 

know how to proceed, the children may help each 

other. That is, one learner may start to give advice 

to the other. Advice may be necessary before talking 

to the robot, for example, when the learner does not 

remember what he or she needs to say, or after 

talking to the robot when the robot does not validate 

the learner’s response. 

In our data, we identified 320 advice-giving 

situations. In 71 % of these situations (n = 226), 

advise was given by the teacher. In 29 % of the 

cases (n = 94), learners were giving advice to each 

other. Out of these 94 situations, 53 % were 

epistemic and 47 % normative pieces of advice. The 

epistemic pieces of advice include translations, 

clues, and correct answers, while the normative 

ones include, for example, imperatives and verbs of 

obligation. Also, when analysing the sequences, we 

took note of who initiated the advice. Out of these 

94 advice-giving situations between learners, 56 % 

were other initiated and 44 % self-initiated.  

4.2 Microanalyses 

Next, we will present three examples of the 

analysed advice-giving situations. Example 1 shows 

an other-initiated epistemic advice that takes the 

form of a simple question-response sequence. In this 

example, the learners have already repeated the 

phrases once and are trying to remember the phrase 

in question from a picture shown on the laptop. The 

phrase that the robot expects in this situation is a 

negative response to the question, Do you have any 

brothers?. The negotiation occurs before the 

interaction with the robot, due to the learner’s 

limited vocabulary. 

Example 1 

1 C1: *presses “next” on the laptop* 

2 T: *sits down* 

3 C1: {C2’s name} *beckons C2* 

4 → C2: *°vad säger jag°* What do I say? 

  *looks at T* 

5 → C1: *°no, I don’t°* 

  *looks at C2* 

6 C2: no, I don’t 

7 R: no. I don’t 

8 C1: *presses “next” on the laptop* 

© 2022 The Authors. This is an open access article under the CC BY license. DOI: 10.6094/UNIFR/223816 48



HILLA-MARJA HONKALAMMI, OUTI VEIVO, MARJUT JOHANSSON SPOHUMA21

(Video 1) 

In Example 1, the advice-requesting and advice-

giving take the form of a simple open question and 

the response to it. On line 3, C1 initiates the advice 

by mentioning C2’s name and beckoning with a 

hand gesture. After this initiation, C2 requests 

advice by asking quietly, vad säger jag (what do I 

say). He directs the question to the teacher with a 

glance (line 4), but it is the other learner present in 

the situation, C1, who answers it. In answering the 

question, C1 gives C2 an epistemic advice by telling 

C2 the phrase that the robot expects to hear. In this 

situation, the recipient of the advice recognises his 

ignorance by asking an open question. 

However, the recipients of the advice often try 

to avoid recognising their ignorance and the 

knowledge asymmetry in the situation, for example, 

by displaying knowledge themselves. An 

illustration of this is given in Example 2, where the 

learner tries to recall a target word. 

Example 2  

1 C11: *presses “next” on the laptop* 

2 → C11: *det var mor var det* It was mom, 

wasn’t it? 

  *looks at C12* 

3 → C12: *nods* juu Yeah. 

4 → C11: °jag tror det° I think so. 

5 C11: mother 

6 R: mother 

7 C11: *presses “next” on the laptop* 

(Video 6) 

In Example 2, the request for advice, in this example 

also the initiation of the advice sequence, is not an 

open but a closed question. The request is 

formulated as an assertion, det var mor (it was 

mom), and an added tag question, var det (wasn’t it). 

C12 confirms the proposition twice – with a nod and 

an affirmation, juu (yeah). This type of advice is 

also epistemic, but the recipient has demonstrated 

his own knowledge by providing a proposition in 

the request. C11 only asks for confirmation of 

knowledge, and therefore, the epistemic asymmetry 

between the advisor and the advisee is not as 

substantial as in Example 1. Further, C11 affirms his 

knowledge again in his response to the advice with 

jag tror det (I think so).  

In Example 3, the learning situation is starting, 

and the learners are repeating target words after the 

robot. The robot provides two alternatives for the 

word, but the learner only needs to repeat one of 

them. 

Example 3 

1 C15: *presses “next” on the laptop* 

2 R: mother. mom 

3 C16: moder mom 

4 C16: moder 

5 → C15: °säg på nytt bara° Just say again. 

6 C16: moder 

7 R: *nods* 

8 C16: moder 

9 → C15: *°säg bara mom°* Just say mom. 

  *looks at C16* 

10 → C16: mom 

11 R: mother. mom 

12 T: jes Yep. 

13 C15: *presses “next” on the laptop* 

(Video 8) 

In Example 3, C16 begins by repeating both 

alternatives and then chooses the first one, mother. 

However, C16 pronounces the word incorrectly; the 

unfamiliar EFL phoneme /ð/ is replaced by the 

familiar phoneme /d/. On line 5, C15 initiates advice 

by encouraging C16 to repeat the word. This advice 

takes the form of a strong normative advice – an 

imperative säg på nytt bara (just say again). C16 

acts on the advice but the robot still does not 

validate the answer and only nods its head. This is a 

sign that it is detecting voice without understanding 

it. When the situation does not resolve itself by 

simple repetition of the word, C15 offers advice a 

second time. This time, the normative advice form 

is joint to a proposition to use the other, simpler 

alternative mom that does not include the 

problematic phoneme /ð/. The advice is therefore an 

imperative, säg bara mom (just say mom) where the 

advisor provides an alternative course of action. 

When C16 accepts the advice by conforming to it, 

the robot immediately accepts the word. 

5 Discussion 

Combining the study of interaction with social 

robots, our research shows that it is most often the 
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teacher who gives advice in RALL, but that the 

young learners give each other advice as well. When 

a learner is experiencing a possible problem in the 

CRI, they or their peer learner may initiate advice 

sequences which can include both normative and 

epistemic forms of advice. In learner-learner 

situations, there were no significant differences in 

the proportions of who initiated the advice (44 % 

self-initiated and 56 % other-initiated) or which 

dimension of advice was used (47 % normative and 

53 % epistemic). 

It seems that working with the robot creates 

learning situations which allow peer interaction and 

collaboration between young learners. This may be 

because the learners treat the learning situation with 

a robot as a shared task and not an individual one, 

even though they take turns in answering the robot. 

Consequently, the learners work together to solve 

the conversational breakdowns in CRI, give each 

other advice and engage in cooperative learning. As 

the scope of this study does not allow comparison 

between RALL and non-RALL foreign language 

learning situations, further research is needed to 

determine the robot’s influence on the peer 

interaction. 

In this study, we found that social robots can 

provide practice for foreign language interaction 

itself but also for problem-solving and for peer 

interaction (see also [8]). Our results suggest that 

social robots may enable meaningful learning 

interaction even when the interaction with the robot 

breaks down; the interaction problems in RALL can 

lead to fruitful problem-solving interactions 

between the learners. RALL situations may 

therefore be profitable even when the interaction 

seems cumbersome. Consequently, the robots’ 

limitations should not deter from using social robots 

as tools for language learning. This study provides 

an introductory glimpse into peer interaction 

between learners in RALL – a topic that could help 

us gain a better understanding of the possibilities of 

social robots and collaborative language learning.  
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8 Transcription conventions 

The recorded videos were transcribed with 

simplified conventions of Jefferson [16].  

C1 Child 1 

T Teacher 

R Robot 

** Gesture marked with the 

corresponding stretch of talk 

. Micropause 

°° Low volume 

{C2’s name} Anonymised name 

What do I say? Translation from Swedish 

→ Point of interest 
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Abstract

In recent years, voice-AI systems have seen signifi-
cant improvement in intelligibility and naturalness,
but the human experience when talking to a machine
is still remarkably different from the experience of
talking to a fellow human. In this paper, we explore
one dimension of such differences, i.e., the occur-
rence of disfluency in machine speech and how it
may impact human listeners’ processing and memory
of linguistic information. We conducted a human-
machine conversation task in Mandarin Chinese us-
ing a humanoid social robot (Furhat), with different
types of machine speech (pre-recorded natural speech
vs. synthesized speech, fluent vs. disfluent). During
the task, the human interlocutor was tested in terms
of how well they remembered the information pre-
sented by the robot. The results showed that disfluent
speech (surrounded by “um”/”uh”) boosted memory
retention only in pre-recorded speech for a retelling
task but not in synthesized speech. We discuss the im-
plications of current findings and possible directions
of future work.

1 Introduction

With the increasing use of smart technology, more
and more people become experienced with interact-
ing with voice-AI systems, such as Siri and Amazon
Alexa. While the effectiveness of such systems is
impressive, probably few people would agree that
talking to a machine is exactly the same as talking
to a real person. There are two perspectives one
can take when considering the differences between
human-computer and human-human conversations.
The first one regards how human-like the existing
voice-AI systems are. Intelligibility aside, the speech
produced by a voice-AI is mostly fluent, standard,
and void of emotions, whereas real humans are of-

ten disfluent, accented, and sometimes emotional in
spontaneous conversations. Such discrepancies have
led to calls for a more diverse and realistic design of
AI voice [1] and attempts to build voice-AI systems
that are not completely fluent [2, 3, 4, 5, 6, 7].

The second perspective regards whether human
talkers would show the same speech and process-
ing behavior when interacting with a voice-AI as
with a human interlocutor. Cohn, Zellou and col-
leagues [8, 9] reported evidence of phonetic imita-
tion and speech rate entrainment by human talkers
in human-computer interaction, similar to what has
been observed in human-human interaction. How-
ever, a recent study by [10] found that when working
on a picture naming task with a robot partner, human
talkers did not show the partner-elicited inhibitory ef-
fects reported for the same task when speakers were
paired with a human partner.

Building on previous research, the current study
aims to explore the effects of disfluency in human-
computer conversations. We implemented a speech
robot that could produce disfluent speech, and inves-
tigated how human talkers would process disfluent
robot speech. Instead of a voice-AI, we employed
Furhat (https://furhatrobotics.com/), a humanoid robot
with the ability to produce not only speech but also
facial expressions, head and lip movement, and eye
contact, which is purportedly more realistic and en-
gaging than a voice-AI [11, 12].

The experiment we report in this paper focuses on
the effects of disfluency on memory recall. Among
the existing linguistic literature on disfluency in natu-
ral speech and its impact on comprehension [13, 14],
a number of studies [15, 16] reported that information
presented with disfluency markers (e.g. “um”/“uh”)
tends to be better remembered and recalled by the
listener compared to information presented in fluent
speech, presumably due to heightened attention in-
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duced by disfluency markers. However, [17] failed to
find the same facilitatory effect of disfluency in their
web-based replication study. In the current study, we
attempt to replicate the memory recall experiment
with human-computer conversations. We hypothe-
size that the same memory advantage associated with
disfluency would be observed when a robot conver-
sational partner produces disfluent speech. Since the
existing text-to-speech (TTS) systems may not be
able to produce natural-sounding disfluent speech,
we included both pre-recorded speech produced by a
human reader and synthesized speech generated by a
TTS system.

2 Methods

The main task was a human-computer dialogue in
Mandarin Chinese, during which the human partic-
ipant would be asked to recall the information that
Furhat had presented earlier. The experiment adopted
a 2×2 design, varying the type of Furhat speech
(pre-recorded natural speech vs. synthesized speech)
and the presence of disfluency (fluent vs. disfluent).
Natural speech was recorded by a female Mandarin
speaker in her 20s (i.e., the reader), while synthesized
speech was generated using the Amazon Polly TTS
system with the Zhiyu Chinese female voice. Dis-
fluent speech was featured by the insertion of fillers
“um” and “uh” at utterance-initial positions every two
or three sentences. The inserted fillers’ average dura-
tion is 0.42s in the synthesized voice condition and
0.63s in the pre-recorded voice condition. There is
no added surrounding silence, consistent with the
findings in [18] of fillers’ environment in Mandarin
Chinese. The story duration by experiment condition
is in table 1. Each participant was randomly assigned
to one of the four conditions. Mean memory accura-
cies were compared across conditions. In the space
below, we report more details of the experimental
methods.

Table 1: Story duration(seconds) by experiment con-
dition

Experiment condition Story 1 Story 2 Story 3

Pre-recorded speech
Fluent 79 79 121

Disfluent 82 81 124

Synthesized speech
Fluent 91 84 123

Disfluent 93 89 126

2.1 Participants

All the participants are native Mandarin speakers
from Mainland China recruited from a local univer-
sity in Hong Kong. The study was approved by the
ethics committee of the Hong Kong Polytechnic Uni-
versity, and all the participants gave written consent
prior to the experiment. None of the participants
studied linguistics, psychology, or computer science;
in general, the participants had little or no prior expe-
rience interacting with a humanoid robot, although
some had used a voice AI such as Siri, Google As-
sistant, or Amazon Alexa before. In this paper, we
report the results with 57 participants (22M, 35F;
18-36 y.o., mean = 24.36, sd = 4.51), 15 for the pre-
recorded disfluent condition, and 14 for the other
three conditions.

2.2 Materials

The critical materials of this experiment are three sto-
ries for the memory test: a short story about the Little
Prince (Story 1), a fantasy story constructed by the
authors (Story 2), and a short story from Alice in the
Wonderland (Story 3) that was translated from one of
the stories used in [15]. Each story had a few hundred
Chinese characters (Story 1: 293; Story 2: 324; Story
3: 499). In the disfluent version, “um”/“uh” was in-
serted at utterance-initial positions every two or three
sentences with equal chance between the two mark-
ers. Both Story 1 and Story 2 were followed by two
multiple-choice questions (each with four choices)
regarding some factual detail presented in the story
(e.g., “What is the nationality of the author of Little
Prince? American, British, German, or French?”).
Sentences that contained answers to the questions all
appeared with an utterance-initial “um”/“uh” in the
disfluent version of the story. After hearing Story
3, the participant would be asked to retell the story
with as much detail as they could remember. Six
(out of 14) plot points in Story 3 occurred with an
utterance-initial “um”/“uh” in the disfluent version
(crucial), while the remaining 8 plot points did not
vary between the fluent and disfluent versions (con-
trol).

The natural speech stimuli were recorded in a
soundproof booth, using an AKG C520 head-mounted
microphone connected to a UR22MKII interface. Be-
fore the recording, the reader listened to a sample
of the synthesized speech so that she could match
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in speech rate and style in her own production. To
create natural disfluent stimuli, we elicited naturally
produced tokens of “um” and “uh” by asking the
reader to retell the stories from memory, and then in-
serted the clearest disfluency tokens to the designated
locations in the fluent productions.

The TTS system was overall successful in gener-
ating fluent synthesized speech, but the synthesis of
disfluent speech proved to be challenging. This is not
surprising, given the lack of attention to the modeling
of naturally produced disfluencies in TTS systems.
When conventional spellings of disfluency markers
(“um”/“uh”/“恩”/“啊”/“額”/“哦”) were inserted into
the Chinese text, the resulting synthesized speech
was so unnatural that intelligibility was greatly com-
promised. We ended up using two rare characters
“峎” (for “um”) and “馬我” (for “uh”), which gave
the best synthesis results among all the characters
with similar pronunciations.

2.3 Procedure

The human-computer dialogue task took place in a
soundproof booth, with Furhat (410 mm (H)×270
mm (W)×240 mm (D)) placed on a table against the
wall and the participant seated in a chair about 85 cm
away, facing Furhat and roughly at the same eye level.
The session was recorded by two video cameras,
placed on nearby tables and directed at Furhat and
the participant, respectively. The participant’s ver-
bal responses were also recorded by Furhat’s built-in
microphone. After the participant sat down, upon de-
tecting the presence of the participant, Furhat would
“wake up” from the sleep state and initiate the dia-
logue routine. The routine consisted of five sections,
all led by Furhat: (1) greeting and self introduction
(e.g., “My name is Furhat. We will play a game to-
day.”), (2) small talk (e.g., “Have you spoken to a
robot before?”), (3) practice multiple-choice ques-
tions (e.g., “Which one of the following is a Chinese
musical instrument?”), (4) story telling and memory
test (e.g., “Next, I will tell you a story and then ask
you some questions.”), (5) ending (e.g., “Thank you.
The task has completed. You can leave the room
now.”).

A complete session lasted about 15 minutes. The
critical section for analysis is (4), which contains all
three stories. The preceding sections (i.e., (1)-(3))
serve to familiarize the participant with the inter-

action with Furhat. Throughout the conversation,
Furhat’s speech was accompanied by constant lip
movements and occasional facial expressions (e.g.,
smiling, eyebrow movement). For comprehension,
Furhat used the Google Cloud speech-to-text system;
when recognition failed, we designed subroutines
for Furhat to ask for maximally two repetitions from
the participant for each response. Based on the part-
cipant’s responses to multiple-choice questions in
sections (3) and (4), Furhat would keep track of and
report the participant’s cumulative point after each
answer.

After the dialogue task completed, the participant
would leave the booth and complete a post-study in-
terview with a human researcher, where the partici-
pant would evaluate their experience of interacting
with Furhat and provide ratings of naturalness and
friendliness for Furhat’s speech.

3 Results

3.1 Memory and recall accuracy

We analyzed the accuracy of 57 participants’ verbal
responses in the memory recall test. For the multiple-
choice questions after Stories 1 and 2, a correct an-
swer gets 1 point and a wrong answer gets 0. If the
participant answered wrong first and then changed to
the correct answer, they would get a half point. For
Story 3, we followed the grading rubrics in [15], the
participant gets 1 point for the correctly remembered
plot and 0 otherwise. The total points were divided
by the number of questions (or plot points) to derive
accuracy scores in the range of 0-100%. We built gen-
eralized mixed effects models (using the lme4 pack-
age [19]) to examine the effects of disfluency (Flu-
ent vs. Disfluent) and type of speech(Pre-recorded
vs. Synthesised) and their interaction on response
accuracy, with by-participant and by-question/plot
random effects. Naturalness and friendliness ratings
are modeled separately in ordinal logistic regression
models (using the MASS package [20]) with similar
structure as the accuracy models. Figure 1 plots the
mean accuracy scores by experimental condition by
question category.

As shown in Figure 1, overall, participants’ re-
sponse accuracy for the multiple-choice questions
in stories 1 and 2 (mean accuracy = 75%, baseline
= 25%) is much higher than the retelling in story 3
(mean accuracy = 49%). In addition, we observe sim-
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ilar patterns across stories: (1) when Furhat produces
pre-recorded natural speech, disfluent speech tends
to elicit higher memory accuracy than fluent speech;
(2) when Furhat produces synthesized speech, dis-
fluent speech seems to elicit lower accuracy rates;
(3) in retelling task of story 3, the general accuracy
rate is higher in crucial conditions than in control
conditions; (4) fluent synthesized speech tends to
elicit higher accuracy than fluent pre-recorded speech.
Only the last pattern is significant for Stories 1 and
2 (β = 1.15, p = 0.03), while the other compar-
isons did not reach statistical significance (ps> 0.05).
Interestingly, the pattern also holds for the control
portions of Story 3, which were not affected by the
disfluency manipulation. Whether this reflects an
overall disfluency advantage that goes beyond local
utterances or simply individual differences in base-
line memory and recall performance awaits further
investigation.

3.2 Post-study interview results

Figure 2 shows the naturalness and friendliness scores
obtained from the post-study interviews. The natu-
ralness rating didn’t differ much across conditions
except for the lowest rating for disfluent synthesized
speech, suggesting that the participants were indeed
sensitive to the unnaturalness of synthesized disfluent
speech. The only statistically significant difference
lies in comparing disfluent synthesized speech (β =
−1.54, p = 0.03) and fluent synthesized speech.
Meanwhile, for friendliness rating, fluent pre-recorded
speech tends to be more preferred over disfluent pre-
recorded speech. In contrast, the opposite trend
seems present for synthesized speech, suggesting
a possible compensation for the phonetic awkward-
ness of disfluent synthesized speech, although neither
trend reaches statistical significance.

4 Discussion

This study aims to investigate whether disfluency in
machine speech may influence human listeners’ mem-
ory retention of linguistic information. Our results
showed better memory retention in disfluent condi-
tions only for pre-recorded speech and for retelling in
story 3, but not for synthesized speech. The possible
reason is that the inserted disfluency token may not
sound natural enough. First, the lowest naturalness
rating was found in the disfluent synthesized speech.

Figure 1: Mean accuracy scores (%) by experimental
condition and question category.

Second, as indicated in [4], using a distinct phone for
filler in the synthesized speech was preferred. Never-
theless, we didn’t have this separate phone in our syn-
thesized speech. Third, the location of inserted fillers
may have an influence, in [7] , there was a higher
preference of synthesizer-predicted filler pause types
from location-only annotation than a more precise
annotation, we can differentiate the fillers’ location in
future studies. Fourth, the disfluency token duration
is shorter than the ones in [15], which are more than
1 second as pointed out in [17]. These being consid-
ered, the higher accuracy for crucial plots in story 3
may also not be attributed to the disfluency’s facil-
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Figure 2: Mean naturalness and friendliness scores
by experimental condition.

itatory effect but may be due to the plots’ intrinsic
difficulty to remember. The task difference may need
to be taken into consideration. An unexpected pattern
emerged that synthesized fluent robot speech elicited
better listener memory recall than pre-recorded fluent
speech across all the stories. It may be attributable
to the congruence of visual and audio impression in
this condition, also the highest consistency between
lip movement and speech sound.

In our future work, we will continue to inves-
tigate the implementation of disfluency in machine
speech and the impact of a disfluent conversational
AI on the human interlocutor’s comprehension and
processing.
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[7] É. Székely, G. E. Henter, J. Beskow, and
J. Gustafson, “How to train your fillers: uh
and um in spontaneous speech synthesis,” 10th
ISCA Workshop on Speech Synthesis (SSW 10),
2019.

© 2022 The Authors. This is an open access article under the CC BY license. DOI: 10.6094/UNIFR/223818 56



XINYI CHEN, ANDREAS MARIA LIESENFELD, SHIYUE LI, YAO YAO SPOHUMA21

[8] M. Cohn, K.-H. Liang, M. Sarian, G. Zellou,
and Z. Yu, “Speech rate adjustments in con-
versations with an Amazon Alexa socialbot,”
Frontiers in Communication, vol. 6, no. May,
pp. 1–8, 2021.

[9] G. Zellou, M. Cohn, and T. Kline, “The
influence of conversational role on pho-
netic alignment toward voice-AI and hu-
man interlocutors,” Language, Cognition
and Neuroscience, vol. 0, no. 0, pp.
1–15, 2021. [Online]. Available: https:
//doi.org/10.1080/23273798.2021.1931372

[10] O. A. Wudarczyk, M. Kirtay, D. Pischedda,
V. V. Hafner, J.-D. Haynes, A. K. Kuhlen, and
R. Abdel Rahman, “Robots facilitate human lan-
guage production,” Scientific Reports, vol. 11,
no. 1, p. 16737, Aug. 2021.

[11] L. Cominelli, F. Feri, R. Garofalo, C. Gi-
annetti, M. A. Meléndez-Jiménez, A. Greco,
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